Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2022 Vol.41 No.3

Research Advances on Body Mass Regulation Models in Mammals
Author of the article:YANG Yazuo1, JIA Ting2, ZHANG Di2, ZHANG Hao1, ZHU Wanlong1*, WANG Zhengkun1*
Author's Workplace:1. Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China;
2. Yunnan College of Business Management, Kunming 650106, China
Key Words:mammal; body mass regulation; set point regulation model; settling point regulation model; general model of intake regulation; dual intervention point model
Abstract:Body mass regulation plays an important role in mammalian survival adaptation. This paper mainly reviews the mechanisms of body mass regulation in mammals in the face of environmental changes, and 4 theoretical models of body mass regulation:set point regulation model, settling point regulation model, general model of intake regulation and dual intervention point model. The aim is to provide basic information for mammalian adapt to the environment, and also provide reference for solving the problem of obesity in human beings.
2022,41(3): 340-347 收稿日期:2021-11-15
分类号:Q955; Q958
基金项目:国家自然科学基金项目(32160254);云南省中青年学术和技术带头人后备人才项目(2019HB013);云南省万人计划青年拔尖人才项目(YNWR-QNRC-2019-047)
作者简介:杨押佐(1995—),女,硕士研究生,研究方向:动物生理生态学,E-mail:yangyazuo86@163.com
*通信作者:王政昆,E-mail:wzk_930@yahoo.com.cn;朱万龙,E-mail:zwl_8307@163.com
参考文献:
高文荣, 朱万龙, 孟丽华, 等. 2013. 光周期和高脂食物对雌性高山姬鼠能量代谢和产热的影响[J]. 生态学报, 33(18):5696-5703.
贾义平, 靳伟, 左之才, 等. 2017. 四川荥经县赤腹松鼠体重及脏器湿重的性别与季节差异[J]. 动物学杂志, 52(1):49-56.
李俊年, 刘季科, 陶双伦. 2003. 单宁酸对根田鼠食物摄入量和蛋白质消化率的效应[J]. 兽类学报, 23(1):52-57.
李俊年, 刘季科, 陶双伦. 2007. 饥饿和食物单宁酸对东方田鼠(Microtus fortis)食物摄入量和觅食行为的影响[J]. 生态学报, 27(11):4478-4484.
李兴升, 王德华. 2003. 瘦素在哺乳动物体重调节、繁殖和免疫中的作用[J]. 兽类学报, 23(2):168-174.
莫文清, 荣曦, 刘红. 2017. 大鼠体重调定点测量方法初探[J]. 广西医科大学学报, 34(11):1664-1667.
魏万红, 杨生妹, 樊乃昌, 等. 2004. 动物觅食行为对捕食风险的反应[J]. 动物学杂志, 39(3):84-90.
杨押佐, 贾婷, 张浩, 等. 2021. 昭通绒鼠夏冬季节体重和产热特征的变化[J]. 野生动物学报, 42(3):718-724.
赵志军, 曹静, 陈可新. 2014. 黑线仓鼠体重和能量代谢的季节性变化[J]. 兽类学报, 34(2):149-157.
朱万龙, 蔡金红, 王政昆. 2017. 不同温度对哺乳期大绒鼠持续能量摄入的影响[J]. 生物学杂志, 34(3):33-36.
朱万龙, 贾婷, 刘春燕, 等. 2008. 横断山区大绒鼠体重和身体能值的季节变化[J]. 动物学杂志, 43(5):134-138.
Anderson JW, Konz EC, Frederich RC, et al. 2001. Long-term weight-loss maintenance:a meta-analysis of US studies[J]. American Journal of Clinical Nutrition, 74(5):579-584.
Ben-Zaken I, Haim A, Zubidat AE. 2013. Long-day photoperiod interacts with vasopressin and food restriction to modulate reproductive status and vasopressin receptor expression of male golden spiny mice[J]. Journal of Experimental Biology, 216(18):3495-3503.
Boss C, Roch C. 2015. Recent trends in orexin research-2010 to 2015[J]. Bioorganic and Medicinal Chemistry Letters, 25(15):2875-2887.
Cabanac M, Frankham P. 2002. Evidence that transient nicotine lowers the body weight set point[J]. Physiology & Behaviour, 76(4-5):539-542.
Chow CC, Hall KD. 2014. Short and long-term energy intake patterns and their implications for human body weight regulation[J]. Physiology & Behavior, 134:60-65.
de Castro JM, Plunkett S. 2002. A general model of intake regulation[J]. Neuroscience and Biobehavioral Reviews, 26(5):581-595.
de Castro JM. 2010. The control of food intake of free-living humans:putting the pieces back together[J]. Physiology & Behavior, 99(5):446-453.
Demas GE, Drazen DL, Nelson RJ. 2003. Reductions in total body fat decrease humoral immunity[J]. Proceedings of the Royal Society B:Biological Sciences, 270(1518):905-911.
Farias MM, Cuevas AM, Rodriguez F. 2011. Set-point theory and obesity[J]. Metabolic Syndrome and Related Disorders, 9(2):85-89.
Florant GL, Porst H, Peiffer A, et al. 2004. Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris)[J]. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology, 174(8):633-639.
Frankham P, Cabanac M. 2003. Nicotine lowers the body-weight set-point in male rats[J]. Appetite, 41(1):1-5.
Geary N. 2020. Control-theory models of body-weight regulation and body-weight-regulatory appetite[J/OL]. Appetite, 144:104440[2021-10-01]. https://doi.org/10.1016/j.appet.2019.104440.
Gosler AG, Greenwood JJD, Perrins C. 1995. Predation risk and the cost of being fat[J]. Nature, 377:621-623.
Gosselin C, Cabanac M. 1997. Adrenalectomy lowers the body weight set-point in rats[J]. Physiology & Behavior, 62(3):519-523.
Gregory S. 2012. Effects of alarin on food intake, body weight and luteinizing hormone secretion in male mice[J]. Neuropeptides, 46(2):99-104.
Hall KD, Guo J. 2017. Obesity energetics:body weight regulation and the effects of diet composition[J]. Gastroenterology, 152(7):1718-1727.
Higginson AD, McNamara JM, Houston AI. 2016. Fatness and fitness:exposing the logic of evolutionary explanations for obesity[J]. Proceedings of the Royal Society B:Biological Sciences, 283(1822):1-9.
Kaplan LM. 2000. Genetics of obesity and body weight regulation[J]. Current Opinion in Endocrinology and Diabetes, 7(5):218-224.
Kasher-Meron M, Youn DY, Zong HH, et al. 2019. Lipolysis defect in white adipose tissue and rapid weight regain[J]. American Journal of Physiology-Endocrinology and Metabolism, 317(2):E185-E193.
Kennedy GC. 1953. The role of depot fat in the hypothalamic control of food intake in the rat[J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 140(901):578-596.
Klaus S, Heldmaier G, Ricquier D. 1988. Seasonal acclimation of bank voles and wood mice:nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria[J]. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology, 158(2):157-164.
Krol E, Duncan JS, Redman P, et al. 2006. Photoperiod regulates leptin sensitivity in field voles, Microtus agrestis[J]. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology, 176(2):153-163.
Kronfeld-Schor N, Haim A, Dayan T, et al. 2000. Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice[J]. Physiological & Biochemical Zoology, 73(1):37-44.
Levin BE. 2006. Metabolic imprinting:critical impact of the perinatal environment on the regulation of energy homeostasis[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 361(1471):1107-1121.
Levitsky DA. 2002. Putting behavior back into feeding behavior:a tribute to George Collier[J]. Appetite, 38(2):143-148.
Levitsky DA. 2005. The non-regulation of food intake in humans:hope for reversing the epidemic of obesity[J]. Physiology & Behavior, 86(5):623-632.
McNamara JM, Houston AI. 1990. The value of fat reserves and the tradeoff between starvation and predation[J]. Acta Biotheoretica, 38(1):37-61.
Mercer JG. 1998. Regulation of appetite and body weight in seasonal mammals[J]. Comparative Biochemistry and Physiology Part C:Pharmacology Toxicology and Endocrinology, 119(3):295-303.
Michel C, Cabanac M. 1999. Lipectomy, body weight, and body weight set point in rats[J]. Physiology & Behavior, 66(3):473-479.
Monarca RI, Mathias M, Speakman JR. 2015. Behavioural and physiological responses of wood mice (Apodemus sylvaticus) to experimental manipulations of predation and starvation risk[J]. Physiology & Behavior, 149:331-339.
Müller MJ, Bosy-Westphal A, Heymsfield SB. 2010. Is there evidence for a set point that regulates human body weight?[J/OL]. F1000 Medicine Reports, 2:59[2021-09-01]. https://doi.org/10.3410/M2-59.
Murillo AL, Kaiser KA, Smith DL, et al. 2019. A systematic scoping review of surgically manipulated adipose tissue and the regulation of energetics and body fat in animals[J]. Obesity, 27(9):1404-1417.
Navarro-Castilla A, Barja I. 2014. Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemus sylvaticus)?[J]. Behavioral Ecology & Sociobiology, 68(9):1505-1512.
Ogden J, Oikonomou E, Alemany G. 2015. Distraction, restrained eating and disinhibition:an experimental study of food intake and the impact of ‘eating on the go’[J]. Journal of Health Psychology, 22(1):39-50.
Ross AW, Laura R, Gisela H. 2015. Photoperiod regulates lean mass accretion, but not adiposity, in growing F344 rats fed a high fat diet[J]. PLoS ONE, 10(3):e0119763[2021-09-10]. https://doi.org/10.1371/journal.pone.0119763.
Rothwell NJ, Stock MJ. 1997. A role for brown adipose tissue in diet-induced thermogenesis[J]. Obesity Research, 5(6):650-656.
Seretis K, Goulis DG, Koliakos G, et al. 2015. Short- and long-term effects of abdominal lipectomy on weight and fat mass in females:a systematic review[J]. Obesity Surgery, 25(10):1950-1958.
Shiiya T, Ueno H, Toshinai K, et al. 2011. Significant lowering of plasma ghrelin but not des-acyl ghrelin in response to acute exercise in men[J]. Endocrine Journal, 58(5):335-342.
Song ZG, Wang DH. 2006. Basal metabolic rate and organ size in Brandt's voles (Lasiopodomys brandtii):effects of photoperiod, temperature and diet quality[J]. Physiology & Behavior, 89(5):704-710.
Speakman JR, Ergon T, Cavanagh R, et al. 2003. Resting and daily energy expenditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic effects[J]. Proceedings of the National Academy of Sciences, 100(24):14057-14062.
Speakman JR, Levitsky DA, Allison DB, et al. 2011. Set points, settling points and some alternative models:theoretical options to understand how genes and environments combine to regulate body adiposity[J]. Disease Models & Mechanisms, 4(6):733-745.
Speakman JR. 2007. A nonadaptive scenario explaining the genetic predisposition to obesity:the "predation release" hypothesis[J]. Cell Metabolism, 6(1):5-12.
Speakman JR. 2008. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective:the ‘drifty gene’ hypothesis[J]. International Journal of Obesity, 32(11):1611-1617.
Speakman JR. 2018. The evolution of body fatness:trading off disease and predation risk[J/OL]. Journal of Experimental Biology, 221(Suppl 1):jeb167254[2021-09-10]. https://doi.org/10.1242/jeb.167254.
Sundell J, Norrdahl K. 2002. Body size-dependent refuges in voles:an alternative explanation of the Chitty effect[J]. Annales Zoologici Fennici, 39(4):325-333.
Takenoya F, Kageyama H, Shiba K, et al. 2010. Neuropeptide W:a key player in the homeostatic regulation of feeding and energy metabolism?[J]. Annals of the New York Academy of Sciences, 1200(1):162-169.
Tam J, Dai F, Jain RK. 2009. A mathematical model of murine metabolic regulation by leptin:energy balance and defense of a stable body weight[J]. Cell Metabolism, 9(1):52-63.
Tang GB, Cui JG, Wang DH. 2010. Role of hypoleptinemia during cold adaptation in Brandt's voles[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 297(5):1293-1301.
Tremblay A, Pérusse L, Bouchard C. 2004. Energy balance and body-weight stability:impact of gene-environment interactions[J]. British Journal of Nutrition, 92(Suppl 1):S63-S66.
Tups A, Ellis C, Moar KM, et al. 2004. Photoperiodic regulation of leptin sensitivity in the Siberian hamster, Phodopus sungorus, is reflected in arcuate nucleus SOCS-3 (suppressor of cytokine signaling) gene expression[J]. Endocrinology, 145(3):1185-1193.
Tups A, Stöhr S, Helwig M, et al. 2012. Seasonal leptin resistance is associated with impaired signalling via JAK2-STAT3 but not ERK, possibly mediated by reduced hypothalamic GRB2 protein[J]. Journal of Comparative Physiology B:Biochemical Systemic and Environmental Physiology, 182(4):553-567.
Tups A. 2009. Physiological models of leptin resistance[J]. Journal of Neuroendocrinology, 21(11):961-971.
Wang JM, Zhang YM, Wang DH. 2006. Photoperiodic regulation in energy intake, thermogenesis and body mass in root voles (Microtus oeconomus)[J]. Comparative Biochemistry & Physiology Part A:Molecular & Integrative Physiology, 145(4):546-553.
Weinsier RL, Nagy TR, Hunter GR, et al. 2000. Do adaptive changes in metabolic rate favor weight regain in weight-reduced individuals? An examination of the set-point theory[J]. The American Journal of Clinical Nutrition, 72(5):1088-1094.
Wen J, Song T, Qiao Q, et al. 2018. Strategies of behavior, energetic and thermogenesis of striped hamsters in response to food deprivation[J]. Integrative Zoology, 13(1):70-83.
Wirtshafter D, Davis JD. 1977. Set points, settling points, and the control of body weight[J]. Physiology & Behavior, 19(1):75-78.
Xu DL, Liu XY, Wang DH. 2011. Food restriction and refeeding have no effect on cellular and humoral immunity in Mongolian gerbils (Meriones unguiculatus)[J]. Physiological & Biochemical Zoology, 84(1):87-98.
Zhang LN, Mitchell SE, Hambly C, et al. 2012. Physiological and behavioral responses to intermittent starvation in C57BL/6J mice[J]. Physiology & Behavior, 105(2):376-387.
Zhang XY, Wang DH. 2008. Different physiological roles of serum leptin in the regulation of energy intake and thermogenesis between pregnancy and lactation in primiparous Brandt's voles (Lasiopodomys brandtii)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 148(4):390-400.
Zhang Y, Proenca R, Maffei M, et al. 1994. Positional cloning of the mouse obese gene and it's human homologue[J]. Nature, 372(6505):425-432.
Zhu WL, Zhang L, Wang ZK. 2013a. Thermogenic property and its hormonal regulation in a south China field mouse, Apodemus draco, under seasonal acclimatization[J]. Pakistan Journal of Zoology, 45(2):423-431.
Zhu WL, Zhang H, Meng LH, et al. 2013b. Effects of photoperiod on body mass, thermogenesis and serum leptin in Apodemus draco during cold exposure[J]. Animal Biology, 63(2):107-117.
Zhu WL, Wang B, Cai JH, et al. 2011. Thermogenesis, energy intake and serum leptin in Apodemus chevrieri in Hengduan Mountains region during cold acclimation[J]. Journal of Thermal Biology, 36(3):181-186.
Zhu WL, Wang ZK. 2014. Resting metabolic rate and energetics of reproduction in lactating Eothenomys miletus from Hengduan Mountain region[J]. Zoological Studies, 53(1):1-7.
Zhu WL, Zhang H, Wang ZK. 2012a. Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri):the roles of photoperiod and cold[J]. Journal of Thermal Biology, 37(7):479-484.
Zhu WL, Yang SC, Zhang L, et al. 2012b. Seasonal variations of body mass, thermogenesis and digestive tract morphology in Apodemus cheurieri in Hengduan Mountain region[J]. Animal Biology, 62(4):463-478.
CopyRight©2022 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3