Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2022 Vol.41 No.3

Research Progress in the Relationship Between Microplastics and Tadpole Health
Author of the article:DIAO Yingzhu, WU Liang, LI Yaqi, GUO Feiyan, SHI Shuang, WANG Ping, BAO Chuanhe, ZHANG Zhiqiang*
Author's Workplace:College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
Key Words:microplastic; tadpole; amphibian; immunological ecology
Abstract:Microplastic (MPs), especially for nanoplastics, is considered to be one of the potential endangered factors causing population declination in amphibians after climate changes, ultraviolet radiation and pathogens. MPs threaten tadpole health because of their biological toxicity. In this review, the definition, occurrence and scaling effects of MPs were introduced, and the situation of uptakes, accumulation and emigration of MPs in the body of tadpoles were summarized. In addition, the adverse effects of MPs on tadpole health were listed in aspects of the variations of morphological phenotype, behavior characteristics and histopathology. Finally, further research directions are proposed in the ecological context of environment conversion (from aquatic to terrestrial) and age-specific context of life history, and focusing on immune function plasticity and immunological parameters available for tadpole research.
2022,41(3): 333-339 收稿日期:2021-11-30
分类号:Q959.5
基金项目:安徽农业大学2020年度省级重点教学研究项目(2020jyxm0531)和省级教学示范课项目(2020SJJXSFK0999);安徽农业大学2020年校级研究生院创新基金项目(XJDC2020578)和2021年度研究生创新基金项目(2021yjs-17);安徽农业大学2020年国家级大学生创新创业训练计划项目创新训练项目(202010364075);安徽农业大学2020年(XJDC2020114)和2021年校级大学生创新创业训练计划项目创新训练项目(202110364051;202110364064)
作者简介:刁迎珠(1997—),女,硕士研究生,研究方向:水产养殖学,E-mail:844435112@qq.com
*通信作者:张志强,E-mail:zzq-003@163.com
参考文献:
刁迎珠, 郭飞燕, 李雅琦, 等. 2021a. 聚苯乙烯荧光微球对黑斑侧褶蛙蝌蚪身体和内脏器官大小的影响[C]//中国动物学会两栖爬行动物学分会, 俄罗斯两栖爬行动物学会, 亚洲两栖爬行动物学研究学会. 亚欧两栖爬行动物多样性与保护国际学术大会暨中国动物学会两栖爬行动物学分会2021年度学术大会论文摘要集.
刁迎珠, 郭飞燕, 吴海燕, 等. 2021b. 聚苯乙烯微球对黑斑侧褶蛙蝌蚪血液各型白细胞的百分比和应激反应能力的影响[C]//安徽农业大学, 安徽省水产技术推广总站, 安微省水产学会. 第五届中部地区水产饲料实用技术论坛论文摘要集.
丁剑楠, 张闪闪, 邹华, 等. 2017. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展[J]. 生态环境学报, 26(9):1619-1626.
高慧清, 张琼文, 孙思琪, 等. 2017. 变态期花背蟾蜍蝌蚪对植物血凝素的反应模式及其生态学意义[J]. 生态学杂志, 36(9):2542-2548.
马占峰, 姜宛君. 2021. 中国塑料加工工业(2020)[J]. 中国塑料, 35(5):119-125.
吴辰熙, 潘响亮, 施华宏, 等. 2018. 我国淡水环境微塑料污染与流域管控策略[J]. 中国科学院院刊, 33(10):1012-1020.
张志强, 王德华. 2005. 免疫能力与动物种群调节和生活史权衡的关系[J]. 应用生态学报, 16(7):1375-1379.
张志强. 2015. 动物生态学研究中免疫学参数的选择及其优缺点分析[J]. 四川动物, 34(1):145-148.
张志强, 王泽洋, 许洋溢, 等. 2020. 黑斑侧褶蛙变态前后身体大小的变化及对植物血凝素的反应模式[J]. 安徽农业大学学报, 47(4):519-523.
张志强, 王佳慧, 金冰艳, 等. 2021. 温度对黑斑侧褶蛙变态时长及PHA-P反应的影响[J]. 生态学杂志, 40(12):4029-4033.
Amaral DF, Guerra V, Motta AGC, et al. 2019. Ecotoxicity of nanomaterials in amphibians:a critical review[J]. Science of the Total Environment, 686:332-344.
Araújo APC, de Melo NFS, de Oliveira Junior AG, et al. 2020a. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri[J/OL]. Journal of Hazardous Materials, 382:121066[2021-09-01]. https://doi.org/10.1016/j.jhazmat.2019.121066.
Araújo APC, Gomes AR, Malafaia G. 2020b. Hepatotoxicity of pristine polyethylene microplastics in neotropical Physalaemus cuvieri tadpoles (Fitzinger, 1826)[J/OL]. Journal of Hazardous Materials, 386:121992[2021-09-01]. https://doi.org/10.1016/j.jhazmat.2019.121992.
Araújo APC, Malafaia G. 2020. Microplastic ingestion induces behavioral disorders in mice:a preliminary study on the trophic transfer effects via tadpoles and fish[J/OL]. Journal of Hazardous Materials, 401:123263[2021-09-01]. https://doi.org/10.1016/j.jhazmat.2020.123263.
Araújo APC, Rocha TL, de Melo SD, et al. 2021. Micro-(nano)plastics as an emerging risk factor to the health of amphibian:a scientometric and systematic review[J/OL]. Chemosphere, 283(15):131090[2021-09-01]. https://doi.org/10.1016/j.chemosphere.2021.131090.
Bergmann M, Mützel S, Primpke S, et al. 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic[J/OL]. Science Advances, 5(8):eaax1157[2021-09-01]. https://doi.org/10.1126/sciadv.aax1157.
Bernet D, Schmidt H, Meier W, et al. 1999. Histopathology in fish:proposal for a protocol to assess aquatic pollution[J]. Journal of Fish Diseases, 22(1):25-34.
Boyero L, López-Rojo N, Bosch J, et al. 2020. Microplastics impair amphibian survival, body condition and function[J/OL]. Chemosphere, 244:125500[2021-09-01]. https://doi.org/10.1016/j.chemosphere.2019.125500.
Brock PM, Murdock CC, Martin LB. 2014. The history of ecoimmunology and its integration with disease ecology[J]. Integrative and Comparative Biology, 54(3):353-362.
Brun NR, vanHage P, Hunting ER, et al. 2019. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish[J/OL]. Communications Biology, 2:382[2021-09-01]. https://doi.org/10.1038/s42003-019-0629-6.
Chen QQ, Gundlach M, Yang SY, et al. 2017. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of the Total Environment, 584-585:1022-1031.
De Felice B, Bacchetta R, Santo N, et al. 2018. Polystyrene microplastics did not affect body growth and swimming activity in Xenopus laevis tadpoles[J]. Environmental Science and Pollution Research, 25:34644-34651.
Deng YF, Zhang Y, Lemos B, et al. 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J/OL]. Scientific Reports, 7:46687[2021-09-01]. https://doi.org/10.1038/srep46687.
Duis K, Coors A. 2016. Microplastics in the aquatic and terrestrial environment:sources (with a specific focus on personal care products), fate and effects[J/OL]. Environmental Sciences Europe, 28(1):2[2021-09-01]. https://doi.org/10.1186/s12302-015-0069-y.
EPA. 1992. Plastic pellets in the aquatic environment:sources and recommendations (final report)[R]. Washington:United States Environmental Protection Agency Office of Water (WH-556F).
EFSA Panel on Contaminants in the Food Chain (CONTAM). 2016. Presence of microplastics and nanoplastics in food, with particular focus on sea food[J/OL]. EFSA Journal, 14(6):e04501[2021-09-01]. https://doi.org/10.2903/j.efsa.2016.4501.
Gigault J, Ter Halle A, Baudrimont M, et al. 2018. Current opinion:what is a nanoplastic?[J]. Environmental Pollution, 235:1030-1034.
Gosner KL. 1960. A simplified table for staging anuran embryos and larvae[J]. Herpetologica, 16(3):183-190.
Green DM, Lannoo MJ, Lesbarrères D, et al. 2020. Amphibian population declines:30 years of progress in confronting a complex problem[J]. Herpetologica, 76(2):97-100.
Guerrera MC, Aragona M, Porcino C, et al. 2021. Micro and nano plastics distribution in fish as model organisms:histopathology, blood response and bioaccumulation in different organs[J/OL]. Applied Sciences, 11:5768[2021-09-01]. https://doi.org/10.3390/app11135768.
Hu LL, Chernick M, Hinton DE, et al. 2018. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China[J]. Environmental Science and Technology, 52(15):8885-8893.
Hu LL, Su L, Xue YG, et al. 2016. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis[J]. Chemosphere, 164:611-617.
Iannella M, Console G, D'Alessandro P, et al. 2020. Preliminary analysis of the diet of Triturus carnifex and pollution in mountain karst ponds in central Apennines[J/OL]. Water, 12(1):44[2021-09-01]. https://doi.org/10.3390/w12010044.
Kanhai DK, Gardfeldt K, Krumpen T, et al. 2020. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean[J/OL]. Scientific Reports, 10(1):5004[2021-09-01]. https://doi.org/10.1038/s41598-020-61948-6.
K, Gül S. 2020. Characterization of microplastic pollution in tadpoles living in small water-bodies from Rize, the northeast of Turkey[J/OL]. Chemosphere, 255:126915[2021-09-01]. https://doi.org/10.1016/j.chemosphere.2020.126915.
Koelmans AA, Besseling E, Shim WJ. 2015. Nanoplastics in the aquatic environment. Critical review[M]//Bergmann M, Gutow L, Klages M. Marine anthropogenic litter. Cham:Springer:325-340.
Kögel T, Bjorøy Ø, Toto B, et al. 2020. Micro- and nanoplastic toxicity on aquatic life:determining factors[J/OL]. Science of the Total Environment, 709:136050[2021-09-01]. https://doi.org/10.1016/j.scitotenv.2019.136050.
Kolenda K, N, Pstrowska K. 2020. Microplastic ingestion by tadpoles of pond-breeding amphibians-first results from Central Europe (SW Poland)[J]. Environmental Science and Pollution Research, 27(26):33380-33384.
Kosuth M, Mason SA, Wattenberg EV. 2018. Anthropogenic contamination of tap water, beer, and sea salt[J/OL]. PLoS ONE, 13(4):e194970[2021-09-01]. https://doi.org/10.1371/journal.pone.0194970.
Lei LL, Wu SY, Lu SB, et al. 2017. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 619-620:1-8.
Lu YF, Zhang Y, Deng YF, et al. 2016. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science and Technology, 50(7):4054-4060.
Lusher A, Hollman P, Mendoza-Hill J. 2017. Microplastics in fisheries and aquaculture:status of knowledge on their occurrence and implications for aquatic organisms and food safety[M]. Rome:Food and Agriculture Organization of the United Nations (FAO).
McDiarmid RW, Altig R. 1999. Tadpoles:the biology of Anuran larvae[M]. Chicago:University of Chicago Press.
Ragusa A, Svelato A, Santacroce C, et al. 2021. Plasticenta:first evidence of microplastics in human placenta[J/OL]. Environment International, 146:106274[2021-09-01]. https://doi.org/10.1016/j.envint.2020.106274.
Rollins-Smith LA. 2017. Amphibian immunity-stress, disease, and climate change[J]. Developmental and Comparative Immunology, 66:111-119.
Schessl M, Johns C, Ashpole SL. 2019. Microbeads in sediment, Dreissenid mussels, and Anurans in the littoral zone of the upper St. Lawrence River, New York[J]. Pollution, 5(1):41-52.
Sheldon BC, Verhulst S. 1996. Ecological immunology:costly parasite defences and trade-offs in evolutionary ecology[J]. Trends in Ecology and Evolution, 11(8):317-321.
Thompson RC, Olsen Y, Mitchell RP, et al. 2004. Lost at sea:where is all the plastic?[J]. Science, 304(5672):838.
Tussellino M, Ronca R, Formiggini F, et al. 2015. Polystyrene nanoparticles affect Xenopus laevis development[J]. Journal of Nanoparticle Research, 17(2):1-17.
Yang DQ, Shi HH, Li L, et al. 2015. Microplastic pollution in table salts from China[J]. Environmental Science and Technology, 49(22):13622-13627.
Zamora-Camacho FJ. 2019. Integrating time progression inecoimmunology studies:beyond immune response intensity[J]. Current Zoology, 65(2):205-212.
Zhang K, Gong W, Lv JZ, et al. 2015. Accumulation of floating microplastics behind the Three Gorges Dam[J]. Environmental Pollution, 204:117-123.
Zhang K, Shi HH, Peng JP, et al. 2018. Microplastic pollution in China's inland water systems:a review of findings, methods, characteristics, effects, and management[J]. Science of the Total Environment, 630:1641-1653.
Zhang YL, Gao TG, Kang SC, et al. 2020. Microplastics in glaciers of the Tibetan Plateau:evidence for the long-range transport of microplastics[J/OL]. Science of the Total Environment, 758:143634[2021-09-01]. https://doi.org/10.1016/j.scitotenv.2020.143634.
CopyRight©2022 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3