Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2022 Vol.41 No.3

Preliminary Investigation on Mammal and Bird Resources Using Camera Traps in the Xiaohegou Nature Reserve, Sichuan
Author of the article:SONG Zheng1, DAI Jun1, CHEN Jiao1, ZHANG Hong1, Tang Xiaobo1, YAN Shuqi1, YAN Yong1, YANG Xu2, YANG Biao3*, LI Shengqiang4,5*
Author's Workplace:1. Xiaohegou Nature Reserve Adiministrative Bureau, Pingwu, Sichuan Province 622550, China;
2. Chengdu Xing-Ai Information Technology Co., Ltd., Chengdu 610051, China;
3. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province 637002, China;
4. Sichuan Academy of Giant Panda Science, Chengdu 610057, China;
5. Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi Zhuang Autonomous Region 541004, China
Key Words:Xiaohegou Nature Reserve; camera trap; mammal; bird; relative abundance index; grid occupancy
Abstract:From April 2008 to December 2017, camera traps were installed to investigate the diversity of mammals and birds in the Xiaohegou Nature Reserve, Sichuan. A total of 290 camera traps were set up, with an intensive survey of 19 084 efficient camera days at 256 efficient camera sites covering 87 km2, a total of 38 465 photos and 11 068 videos, and 3 772 independent effective records were obtained. A total of 59 species belonging to 26 families and 10 orders, including 4 orders, 12 families and 18 species of mammals, 6 orders, 14 families and 41 species of birds, were identified. Among all, 4 species were the class Ⅰ nationally key protected wild animals and 18 species were the class Ⅱ nationally key protected wild animals. Based on the relative abundance index and grid occupancy, Reeves' muntjac (Muntiacus reevesi), Chinese goral (Naemorhedus griseus), tufted deer (Elaphodus cephalophus), Pere David's rock squirrel (Sciurotamias davidianus), wild boar (Sus scrofa) were ranked as the 5 most abundant mammal species, while Temminck's tragopan (Tragopan temminckii), golden pheasant (Chrysolophus pictus), blue whistling thrush (Myophonus caeruleus), red-billed blue magpie (Urocissa erythrorhyncha), Elliot's laughingthrush (Trochalopteron elliotii) were ranked as the 5 most abundant bird species. Six bird species including crested goshawk (Accipiter trivirgatus), grey-winged blackbird (Turdus boulboul), spotted nutcracker (Nucifraga caryocatactes), David's fulvetta (Alcippe davidi), grey-hooded fulvetta (Fulvetta cinereiceps) and bay woodpecker (Blythipicus pyrrhotis), were found to be the new records in the reserve. There was no significant difference in the number of bird species recorded in a single site under different elevations and different plant community types, but the number of mammal species recorded in a single site differed significantly among elevations (χ2=23.784, df=3, P<0.001) and among plant community types (χ2=18.938, df=3, P<0.001). On the whole, there were more mammal species in the middle elevation (1 700-2 700 m) and mixed forest of evergreen and deciduous broad-leaved. There was no significant difference in the number of mammals and birds in different functional areas of the reserve (mammals:χ2=1.029, df=2, P=0.598; birds:χ2=0.528, df=2, P=0.768). This study monitors and records wild mammal and bird species using camera traps for the first time. In the future, continuous monitoring based on the standard network will be more conducive to understanding the dynamics of species resources and scientific conservation and management.
2022,41(3): 321-332 收稿日期:2021-07-19
分类号:Q958.1; S759.9
作者简介:宋政(1984—),林业中级工程师,研究方向:主要从事保护区野生动植物保护与管理,E-mail:290268659@qq.com
*通信作者:杨彪,博士,研究方向:保护生物学,E-mail:yangb315@163.com;李生强,硕士,研究方向:野生动物生态与保护研究,E-mail:shengqiang322@qq.com
参考文献:
包欣欣. 2017. 基于红外相机与传统样带法兽类多样性研究[D]. 哈尔滨:东北林业大学.
国家林业和草原局, 农业农村部. 2021. 国家重点保护野生动物名录[EB/OL].[2021-02-05]. http://www.forestry.gov.cn/main/5461/20210205/122418860831352.html.
郭瑞, 许丽娟, 王旭池, 等. 2020. 浙江清凉峰国家级自然保护区千顷塘区域鸟兽资源的红外相机调查[J]. 兽类学报, 40(2):183-192.
蒋志刚, 刘少英, 吴毅, 等. 2017. 中国哺乳动物多样性(第2版)[J]. 生物多样性, 25(8):886-895.
蒋志刚, 吴毅, 刘少英, 等. 2021. 中国生物多样性红色名录(脊椎动物)[M]. 北京:科学出版社.
李晟, 王大军, 肖治术, 等. 2014. 红外相机技术在我国野生动物研究与保护中的应用与前景[J]. 生物多样性, 22(6):685-695.
李晟. 2020. 中国野生动物红外相机监测网络建设进展与展望[J]. 生物多样性, 28(9):4-7.
李晟, William JMS, 王大军, 等. 2020. 西南山地红外相机监测网络建设进展[J]. 生物多样性, 28(9):8-17.
刘阳, 陈水华. 2021. 中国鸟类观鸟手册[M]. 长沙:湖南科学技术出版社.
刘邦友, 张廷跃, 梁盛, 等. 2020. 贵州赤水桫椤国家级自然保护区及其周边区域鸟兽多样性红外相机监测对比[J]. 兽类学报, 40(5):93-109.
刘芳, 李迪强, 吴记贵. 2012. 利用红外相机调查北京松山国家级自然保护区的野生动物物种[J]. 生态学报, 32(3):730-739.
马克平. 2011. 监测是评估生物多样性保护进展的有效途径[J]. 生物多样性, 19(2):125-126.
马克平. 2015. 中国生物多样性编目取得重要进展[J]. 生物多样性, 23(2):137-138.
马亦生, 马青青, 何念军, 等. 2020. 基于红外相机技术调查佛坪国家级自然保护区兽类和鸟类多样性[J]. 生物多样性, 28(2):226-230.
青云, 周友兵, 齐敦武, 等. 2004. 四川小河沟自然保护区兽类初步调查[J]. 四川动物, 23(2):142-145.
孙儒泳. 2001. 动物生态学原理[M]. 北京:北京师范大学出版社.
唐中海, 张文广, 齐敦武, 等. 2004. 四川省平武县小河沟自然保护区鸟类资源调查初报[J]. 西华师范大学学报(自然科学版), 25(2):130-134.
万雅琼, 李佳琦, 杨兴文, 等. 2020. 基于红外相机的中国哺乳动物多样性观测网络建设进展[J]. 生物多样性, 28(9):74-83.
肖治术, 李欣海, 王学志, 等. 2014. 探讨我国森林野生动物红外相机监测规范[J]. 生物多样性, 22(6):704-711.
肖治术. 2016. 红外相机技术促进我国自然保护区野生动物资源编目调查[J]. 兽类学报, 36(3):270-271.
肖治术, 李学友, 向左甫, 等. 2017. 中国兽类多样性监测网的建设规划与进展[J]. 生物多样性, 25(3):237-245.
肖治术, 陈立军, 宋相金, 等. 2019. 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估[J]. 生物多样性, 27(3):237-242.
肖治术. 2019a. 红外相机技术在我国自然保护地野生动物清查与评估中的应用[J]. 生物多样性, 27(3):235-236.
肖治术. 2019b. 自然保护地野生动物及栖息地的调查与评估研究——广东车八岭国家级自然保护区案例分析[M]. 北京:中国林业出版社.
解焱, 汪松, Peter S. 2004. 中国的保护地[M]. 北京:清华大学出版社.
杨彪, 李生强, 杨旭, 等. 2021. 四川自然保护红外相机数据管理系统的研发及其应用[J]. 四川林业科技, 42(1):141-148.
张德丞, 和延龙, 冯一帆, 等. 2020. 四川勿角自然保护区野生鸟兽的红外相机初步监测[J]. 四川动物, 39(2):221-228.
张履冰, 崔绍朋, 黄元骏, 等. 2014. 红外相机技术在我国野生动物监测中的应用:问题与限制[J]. 生物多样性, 22(6):696-703.
Azlan JM, Sharma DSK. 2006. The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia[J]. Oryx, 40(1):36-41.
Burton AC, Neilson E, Moreira D, et al. 2015. Review:wildlife camera trapping:a review and recommendations for linking surveys to ecological processes[J]. Journal of Applied Ecology, 52:675-685.
Guo QF, Kelt DA, Sun ZY, et al. 2013. Global variation in elevational diversity patterns[J/OL]. Scientific Reports, 3(1):3007[2021-05-10]. https://doi.org/10.1038/srep03007.
IUCN. 2020. The IUCN red list of threatened species[EB/OL].[2020-03-30]. https://www.iucnredlist.org.
Li S, McShea WJ, Wang DJ, et al. 2010. The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China[J]. IBIS, 152(2):299-309.
McCain CM, Grytnes JA. 2010. Elevational gradients in species richness[J/OL]. eLS, 2011[2021-05-01]. https://doi.org/10.1002/9780470015902.a0022548.
Morrison JC, Sechrest W, Dinerstein E, et al. 2007. Persistence of large mammal faunas as indicators of global human impacts[J]. Journal of Mammalogy, 88(6):1363-1380.
Muldoon KM, Goodman SM, Sharon GD. 2015. Primates as predictors of mammal community diversity in the forest ecosystems of Madagascar[J/OL]. PLoS ONE, 10(9):e0136787[2021-05-01]. https://doi.org/10.1371/journal.pone.0136787.
O'Brien TG, Kinnaird MF, Wibisono HT. 2010. Crouching tigers, hidden prey:Sumatran tiger and prey populations in a tropical forest landscape[J]. Animal Conservation, 6(2):131-139.
O'Connell AF, Nichols JD, Karanth KU. 2010. Camera traps in animal ecology:methods and analyses[M]. Japan:Springer Science & Business Media.
Proença V, Martin LJ, Pereira HM, et al. 2017. Global biodiversity monitoring:from data sources to essential biodiversity variables[J]. Biological Conservation, 213:256-263.
Rahbek C. 1995. The elevational gradient of species richness:a uniform pattern?[J]. Ecography, 18(2):200-205.
Silveira L, Jácomo ATA, Diniz-Filho JAF. 2003. Camera trap, line transect census and track surveys:a comparative evaluation[J]. Biological Conservation, 114(3):351-355.
Steenweg R, Hebblewhite M, Kays R, et al. 2017. Scaling-up camera traps:monitoring the planet's biodiversity with networks of remote sensors[J]. Frontiers in Ecology and the Environment, 15:26-34.
Xue Y, Li D, Xiao W, et al. 2015. Activity patterns of wild bactrian camels (Camelus bactrianus) in the northern piedmont of the Altun Mountains, China[J]. Animal Biology, 65:209-217.
CopyRight©2022 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3