Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2022 Vol.41 No.3

A Preliminary Study on Population Genetic Structure of Trogloneta yunnanense
Author of the article:LIU Shiliang1,2, LIN Yucheng1,2*
Author's Workplace:1. Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
2. Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
Key Words:Trogloneta yunnanense; COⅠ gene; haplotype; gene flow; population genetic differentiation; genetic diversity
Abstract:Trogloneta yunnanense (Song & Zhu, 1994) is a cave-dwelling spider that lives on the Yunnan-Guizhou Plateau. To explore the population structure and genetic diversity of T. yunnanense, a preliminary study was carried out on the mitochondrial COⅠ gene sequences of 159 individual specimens from 6 cave populations. The results showed that:1) sixteen haplotypes were detected in 159 individuals, and no haplotypes were shared among the populations. The patterns of genetic diversity were high in general, low within each population, high in haplotype diversity, and low in nucleotide diversity; 2) The genetic differentiation of T. yunnanense was significant among populations, and little variation within each population. The FST values between populations were above 0.9 (P<0.01) with weak gene flow (Nm=0.01). The inter-population variation accounted for 95.75% of the total variation, while the intra-population variation accounted for only 4.25%; 3) The results of neutral test and nucleotide mismatch distribution test showed that T. yunnanense did not experience population expansion, and the population size remained stable. It is speculated that cave isolation and extreme subterranean environmental conditions may contribute to maintaining the stability of the population sizes and promoting the genetic differentiation among populations of T. yunnanense.
2022,41(3): 256-263 收稿日期:2022-01-23
分类号:Q959.22; Q953+.1
刘名信, 彭作刚, 张志升. 2012. 蜘蛛分子系统学研究进展[J]. 蛛形学报, 21(2):103-114.
宋大祥, 朱明生. 1994. 我国数种洞穴蛛形类记述. 中国动物学会成立60周年:纪念陈桢教授诞辰100周年论文集[M]. 北京:中国科学技术出版社:35-46.
Avise JC. 2009. Phylogeography:retrospect and prospect[J]. Journal of Biogeography, 36(1):3-15.
Ballarin F, Li SQ. 2018. Diversification in tropics and subtropics following the mid-Miocene climate change:a case study of the spider genus Nesticella[J]. Global Change Biology, 24(2):577-591.
Barr TC. 1968. Cave ecology and the evolution of troglobites[M]//Dobzhansky T, Hecht MK, Steere WC. Evolutionary biology. Boston:Springer:35-102.
Cardoso P, Pekar S, Jocque R, et al. 2011. Global patterns of guild composition and functional diversity of spiders[J/OL]. PLoS ONE, 6(6):e21710[2021-10-09].
Clement M, Posada D, Crandall KA. 2000. TCS:a computer program to estimate gene genealogies[J]. Molecular Ecology, 9(10):1657-1659.
Cooper S, Bradbury J, Saint K, et al. 2007. Subterranean archipelago in the Australian arid zone:mitochondrial DNA phylogeography of amphipods from central Western Australia[J]. Molecular Ecology, 16(7):1533-1544.
Culver D, Pipan T, Schneider K. 2009. Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions[J]. Freshwater Biology, 54(4):918-929.
Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0):an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics, 1:47-50.
Hall TA. 1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series, 41:95-98.
Hedin MC. 1997. Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae:Nesticidae:Nesticus)[J]. Molecular Biology and Evolotion, 14(3):309-324.
Howarth FG. 1983. Ecology of cave arthropods[J]. Annual Review of Entomology, 28:365-389.
Hudson RR, Slatkin M, Maddison WP. 1992. Estimation of levels of gene flow from DNA sequence data[J]. Genetics, 132(2):583-589.
Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. 2017. ModelFinder:fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 14(6):587-589.
Kumar S, Stecher G, Li M, et al. 2018. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolotion, 35(6):1547-1549.
Lanfear R, Frandsen PB, Wright AM, et al. 2017. PartitionFinder 2:new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses[J]. Molecular Biology and Evolotion, 34(3):772-773.
Leigh JW, Bryant D. 2015. POPART:full-feature software for haplotype network construction[J]. Methods in Ecology and Evolotion, 6(9):1110-1116.
Li Y, Lin YC. 2019. Taxonomic review of the Asian Trogloneta species (Araneae, Mysmenidae)[J]. ZooKeys, 817:41-60.
Lin YC, Li SQ. 2008. Mysmenid spiders of China (Araneae:Mysmenidae)[J]. Annales Zoologici, 58(3):487-520.
Luo ZH, Tang SH, Jiang ZG, et al. 2016. Conservation of terrestrial vertebrates in a global hotspot of karst area in southwestern China[J/OL]. Scientific Reports, 6:25717[2021-10-09].
Mammola S, Piano E, Isaia M. 2016. Step back! Niche dynamics in cave-dwelling predators[J]. Acta Oecologica, 75:35-42.
Nguyen LT, Schmidt HA, von Haeseler A, et al. 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies[J]. Molecular Biology and Evolotion, 32(1):268-274.
Page T, Humphreys W, Hughes J. 2008. Shrimps down under:evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda:Atyidae:Stygiocaris)[J/OL]. PLoS ONE, 3(2):e1618[2021-10-09].
Poulson TL, White WB. 1969. The cave environment[J]. Science, 165(3897):971-981.
Ronquist F, Teslenko M, van der Mark P, et al. 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model selection across a large model space[J]. Systematic Biology, 61(3):539-542.
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, et al. 2017. DnaSP 6:DNA sequence polymorphism analysis of large datasets[J]. Molecular Biology and Evolotion, 34(12):3299-3302.
Shu SS, Jiang WS, Whitten T, et al. 2013. Drought and China's cave species[J]. Science, 340(6130):272.
Snowman CV, Zigler KS, Hedin M. 2010. Caves as islands:mitochondrial phylogeography of the cave-obligate spider species Nesticus barri (Araneae:Nesticidae)[J]. Journal of Arachnology, 38:49-56.
Zhang YY, Li SQ. 2014. A spider species complex revealed high cryptic diversity in South China caves[J]. Molecular Phylogenetics and Evolution, 79:353-358.
CopyRight©2022 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3