Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2022 Vol.41 No.3

Mitochondrial Genome Characterization and Phylogeny of Diplodiscus nigromaculati
Author of the article:LI Zongxian1, LI Jiqian1, XU Weijiang1,2, FAN Lixian1,2*
Author's Workplace:1. School of Life Science, Yunnan Normal University, Kunming 650500, China;
2. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
Key Words:Diplodiscus nigromaculati; Paramphistomoidea; Diplodiscidae; mitochondrial genome; new host record
Abstract:Trematodes of family Diplodiscidae Cohn, 1904 are common parasites of amphibian, whose morphological diversities have widely been reported. However, the research on the genetic diversities based on mitochondrial genome is still undocumented. The complete mitochondrial genome of Diplodiscus nigromaculati (Diplodiscus Diesing, 1836) from the intestinal tract of host Dianrana pleuraden was described and analyzed in the present study. The complete mitochondrial genome of D. nigromaculati is 14697bp long (GenBank accession number:MW698822), which is composed of 22 tRNA genes, 12 protein-coding genes, 2 rRNA genes and 1 noncoding region. The content of AT (60%) in the mitochondrial genome is higher than that of GC (40%), which is the lowest in reported species of Paramphistomoidea Fischoeder, 1901. The exchange of trnG and trnE indicate an important genetic structure feature of mitochondrial genome of flukes of the Paramphistomoidea. The phylogeny analysis using concatenated amino acid sequences for 12 protein-coding genes supported that Diplodiscus belongs to Diplodiscidae. This study indicated that D. pleuraden is the new host record of D. nigromaculati. These results provided basic data and reference for the future research of genetic structure and genetic diversity of this group of fluke.
2022,41(3): 248-255 收稿日期:2021-11-01
分类号:Q959.155
基金项目:国家自然科学基金项目(31560589;32060115;30660022;30960049;31260507)
作者简介:李宗宪(1996—),男,硕士研究生,主要从事鱼类两栖类复殖吸虫分类学研究,E-mail:zongxian_li514@126.com
*通信作者:范丽仙,主要从事寄生虫分类学研究,E-mail:anne330@163.com
参考文献:
丁健, 李寄仟, 郭苗, 等. 2018. 澜沧江线鳢寄生叶形属复殖吸虫一新种[J]. 云南师范大学学报(自然科学版), 38(3):63-69.
高利宾. 2007. 南方四省无尾两栖类寄生复殖吸虫的分类研究[D]. 广州:华南师范大学.
李寄仟, 李云臻, 范丽仙. 2020. 黄颡鱼寄生东肌吸虫属(复殖吸虫亚纲:东肌吸虫科)3种复殖吸虫的分类学研究[J]. 四川动物, 39(6):616-629.
聂宗恒, 白俊, 许姝歆, 等. 2018. 复殖亚纲线粒体基因组特征分析及其应用进展[J]. 基因组学与应用生物学, 37(4):48-57.
唐崇惕, 唐仲璋. 2015. 中国吸虫学[M]. 北京:科学出版社.
汪溥钦. 1977. 棘口、同盘两类吸虫新种记述和中华重盘吸虫的生活史研究[J]. 福建师范大学学报(自然科学版), 11(2):62-77.
王根红, 张志忠. 2018. 安徽省金寨县牛羊肠道寄生虫感染调查[J]. 畜牧与饲料科学, 39(8):104-107.
吴宝华. 1991. 浙江动物志[M]. 浙江:浙江科学技术出版社.
许姝歆, 聂宗恒, 白俊, 等. 2019. 吸虫类线粒体基因组的特征及系统发生分析[J]. 基因组学与应用生物学, 38(2):38-51.
张东. 2020. 单殖吸虫的分子进化与系统发育研究及PhyloSuite平台开发[D]. 北京:中国科学院大学.
张娟. 2011. 单殖吸虫线粒体基因组进化生物学研究[D]. 广州:中山大学.
钟东, 赵贵军, 张振书, 等. 2002. 基因组内碱基分布整体均衡与局部不均衡的研究进展[J]. 遗传, 24(3):351-355.
周庆安. 2013. 广西南宁市市售蛙, 蛇体内寄生虫调查[D]. 南宁:广西大学.
Anuracpreeda P, Panyarachun B, Ngamniyom A, et al. 2012. Fischoederius cobboldi:a scanning electron microscopy investigation of surface morphology of adult rumen fluke[J]. Experimental Parasitology, 130(4):400-407.
Arnason U, Gullberg A, Janke A, et al. 2007. Mitogenomic analyses of caniform relationships[J]. Molecular Phylogenetics & Evolution, 45(3):863-874.
Boore JL. 1999. Animal mitochondrial genomes[J]. Nucleic Acids Research, 27(8):1767-1780.
Bray RA, Gibson DI, Jones A. 2008. Keys to the Trematoda vol 3[M]. Wallingford:CABI Publishing and The Natural History Museum.
Brent M, Donath A, Jühling F, et al. 2013. MITOS:Improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 69(2):313-319.
Chen L, Liu T, Yang D, et al. 2013. Analysis of codon usage patterns in Taenia pisiformis through annotated transcriptome data[J]. Biochemical & Biophysical Research Communications, 430(4):1344-1348.
Gary B. 1999. Tandem repeats finder:a program to analyze DNA sequences[J]. Nucleic Acids Research, 27(2):573-580.
Han ZQ, Li K, Luo H, et al. 2020. Characterization of the complete mitochondrial genome of Fischoederius elongatus derived from cows in Shanghai, China[J/OL]. BioMed Research International, 2020:7975948[2021-09-10]. https://doi.org/10.1155/2020/7975948.
Hegedusova E, Brejova B, Tomaska L, et al. 2014. Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis[J]. Current Genetics, 60(1):49-59.
Horak IG. 1971. Paramphistomiasis of domestic ruminants[J]. Advances in Parasitology, 9(8):33-72.
Huang X, Xu J, Chen L, et al. 2017. Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps[J/OL]. BMC Genomics, 18(1):308[2021-08-10]. https://doi.org/10.1186/s12864-017-3704-8.
Jones A, Bray RA, Gibson DI. 2005. Keys to the Trematoda:volume 2[M]. Wallingford:CABI Publishing and The Natural History Museum.
Kolpakov R, Bana G, Kucherov G. 2003. mreps:efficient and flexible detection of tandem repeats in DNA[J]. Nucleic Acids Research, 31(13):3672-3678.
Laidemitt MR, Zawadzki ET, Brant SV, et al. 2017. Loads of trematodes:discovering hidden diversity of paramphistomoids in Kenyan ruminants[J]. Parasitology, 144(2):131-147.
Lamolle G, Fontenla S, Rijo G, et al. 2019. Compositional analysis of flatworm genomes shows strong codon usage biases across all classes[J/OL]. Frontiers in Genetics, 10(5):771[2021-08-20]. https://doi.org/10.3389/fgene.2019.00771.
Laslett D, Canbck AB. 2008. ARWEN:a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences[J]. Bioinformatics, 24(2):172-175.
Le TH, Blair D, Mcmanus DP. 2002. Mitochondrial genomes of parasitic flatworms[J]. Trends in Parasitology, 18(5):206-213.
Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5:an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research, 49(1):293-296.
Littlewood DT, Lockyer AE, Webster BL, et al. 2006. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms[J]. Molecular Phylogenetics & Evolution, 39(2):452-467.
Littlewood DT, Olson P. 2001. Interrelationships of the Platyhelminthes[M]. London:Chemical Rubber Company Press.
Littlewood DT. 2008. Platyhelminth systematics and the emergence of new characters[J]. Parasite, 15(3):333-341.
Locke SA, Dam AV, Caffara M, et al. 2018. Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis[J]. International Journal for Parasitology, 48(13):1043-1059.
Lowe TM, Chan PP. 2016. tRNAscan-SE On-line:integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Research, 24(2):54-57.
Ma J, He JJ, Liu GH, et al. 2015. Mitochondrial and nuclear ribosomal DNA dataset supports that Paramphistomum leydeni (Trematoda:Digenea) is a distinct rumen fluke species[J/OL]. Parasites & Vectors, 8(1):201[2021-08-10]. https://doi.org/10.1186/s13071-015-0823-4.
Ma J, Sun MM, He JJ, et al. 2017. Fasciolopsis buski (Digenea:Fasciolidae) from China and India may represent distinct taxa based on mitochondrial and nuclear ribosomal DNA sequences[J]. Parasites & Vectors, 10(1):101.
Maldonado LL, Georgina S, Milone DH, et al. 2018. Whole genome analysis of codon usage in Echinococcus[J]. Molecular and Biochemical Parasitology, 225(18):54-66.
Plotkin JB, Kudla G. 2011. Synonymous but not the same:the causes and consequences of codon bias[J]. Nature Reviews Genetics, 12(1):32-42.
Razo-Mendivil U, León-Règagnon V, Gerardo P. 2004. Description of two new species of Glypthelmins Stafford, 1905 (Digenea:Macroderoididae) in Rana spp. from Mexico, based on morphology and mtDNA and rDNA sequences[J]. Systematic Parasitology, 59(3):199-209.
Razo-Mendivil U, Leónrégagnon V, Gerardo P. 2006. Monophyly and systematic position of Glypthelmins (Digenea), based on partial lsrDNA sequences and morphological evidence[J]. Organisms Diversity & Evolution, 6(4):308-320.
Sharp PM, Zeng EK. 2010. Forces that influence the evolution of codon bias[J]. Philosophical Transactions Biological Sciences, 365(1544):1203-1212.
Waeschenbach A, Webster BL, Littlewood D. 2012. Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes:Cestoda) with large fragments of mtDNA[J]. Molecular Phylogenetics & Evolution, 63(3):834-847.
Wilkinson L. 2011. ggplot2:elegant graphics for data analysis by Wickham, H.[J]. Biometrics, 67(2):671-679.
Yan HB, Wang XY, Lou ZZ, et al. 2013. The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomidae[J/OL]. PLoS ONE, 8(8):e71300[2021-09-01]. https://doi.org/10.1371/journal.pone.0071300.
Yang X, Luo X, Cai X. 2014. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset[J/OL]. Parasites & Vectors, 7(1):527[2021-09-20]. https://doi.org/10.1186/s13071-014-0527-1.
Yang X, Ma X, Luo X, et al. 2015. Codon usage bias and determining forces in Taenia solium genome[J]. Korean Journal of Parasitology, 53(6):689-697.
Yang X, Wang LX, Chen HM, et al. 2016. The complete mitochondrial genome of Gastrothylax crumenifer (Gastrothylacidae, Trematoda) and comparative analyses with selected trematodes[J]. Parasitology Research, 115(6):2489-2497.
Zhang D, Gao F, Jakovli I, et al. 2020. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 20(1):348-355.
CopyRight©2022 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3