Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2021 Vol.40 No.5

Population Survey and Habitat Quality Assessment of Lophophorus lhuysii in the Wolong National Nature Reserve
Author of the article:ZHONG Xue1#, YANG Nan2#, ZHANG Long1, CHENG Yuehong3*, FENG Xi3, HU Qiang3, JIN Yiguo3
Author's Workplace:1. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province 637009, China;
2. Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China;
3. Wolong National Nature Reserve Administration Bureau, Wenchuan, Sichuan Province 623006, China
Key Words:Wolong National Nature Reserve; Lophophorus lhuysii; habitat quality; infrared camera; relative abundance
Abstract:Chinese monal (Lophophorus lhuysii) is an alpine Galliformes species endemic to China, and also a first-class nationally key protected species in China with high global conservation concern. Wolong National Nature Reserve is one of the most important distribution regions for L. lhuysii, however, less study has been conducted to survey the population and habitat of L. lhuysii in the reserve. During 2019 to 2021, infrared cameras were used to survey L. lhuysii population in an extensive region across the reserve, and the habitat quality was assessed using a species distribution model. The results showed that 1) of the 109 camera sites set in alpine and subalpine regions, L. lhuysii were photographed in 66 sites. This indicated that L. lhuysii was widely distributed in high-elevation areas, especially in Yinchanggou and Zumugou; 2) habitat model built by MaxEnt using 47 occurrence points and 28 environmental variables predicted a total area of 765.07 km2, accounting for 38.25% of the reserve. Both the high-quality and low-quality habitats were mainly distributed in the core zone with the area of 202.22 km2 and 562.85 km2, respectively; 3) the quality of habitat was influenced by climate, vegetation, topographic and human disturbance factors collectively. The highest quality habitat was located in shrub and meadow regions with moderate precipitation seasonally, lower mean temperature in the driest season, lower annual mean temperature, and longer distance from rivers and roads. Overall, the habitat of L. lhuysii in the Wolong National Nature Reserve is large-area with high-quality and well connected, and thus provides good survival environment for L. lhuysii.
2021,40(5): 509-516 收稿日期:2021-05-21
分类号:Q958.1;Q959.7
基金项目:西华师范大学基本科研业务费项目(19D050);2021年国家重点生态功能区转移支付禁止开发区补助项目
作者简介:钟雪(1989-),女,硕士,主要从事生态保护等方面研究,E-mail:zhongxue_cwnu@163.com;杨楠(1982-),男,博士,助理研究员,主要从事野生动物保护与管理研究工作,E-mail:yangnan0204@126.com
*通信作者:程跃红,E-mail:CYH8155@163.com
参考文献:
陈立军, 肖文宏, 肖治术. 2019. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 27(3):243-248.
何芬奇, 卢汰春, 芦春雷, 等. 1986. 绿尾虹雉的繁殖生态研究[J]. 生态学报, 6(2):100-106.
孔维尧, 李欣海, 邹红菲. 2019. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 30(6):2116-2128.
李国庆, 刘长成, 刘玉国, 等. 2013. 物种分布模型理论研究进展[J]. 生态学报, 33(16):4827-4835.
李宏群, 廉振民, 陈存根, 等. 2007. 陕西黄龙山林区褐马鸡春季觅食地选择[J]. 动物学杂志, 42(3):61-67.
刘梦瑶, 高依敏, 陈建宁, 等. 2013. 绿尾虹雉保护生物学研究现状[J]. 江西林业科技, 2:36-39.
唐书培, 穆丽光, 王晓玲, 等. 2019. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价[J]. 北京林业大学学报, 41(1):106-112.
徐基良, 张晓辉, 张正旺, 等. 2002. 白冠长尾雉育雏期的栖息地选择[J]. 动物学研究, 23(6):471-476.
余翔, 陈俊橙, 王彬, 等. 2017. 四川小寨子沟国家级自然保护区绿尾虹雉种群密度调查与栖息地评价[J]. 四川动物, 36(4):361-367.
郑光美. 2015. 中国雉类[M]. 北京:高等教育出版社.
钟雪, 杨炜蓉, 朱云东, 等. 2020. 基于MaxEnt模型的四川片口自然保护区绿尾虹雉栖息地评价[J]. 三峡生态环境监测, 5(4):49-55.
朱耿平, 刘国卿, 卜文俊, 等. 2013. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 21(1):90-98.
BirdLife International. 2016. Lophophorus lhuysii. The IUCN Red List of Threatened Species 2016:e.T22679192A92806697[EB/OL]. (2021-01-01)[2021-05-10]. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679192A92806697.en.
Brickle NW. 2002. Habitat use, predicted distribution and conservation of green peafowl (Pavo muticus) in Dak Lak Province, Vietnam[J]. Biological Conservation, 105(2):189-197.
Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines[J]. Proceedings of the National Academy of Sciences, 114(30):6089-6096.
CITES. 2016. Convention on international trade in endangered species of wild fauna and flora (CITES) appendices Ⅰ, Ⅱ and Ⅲ[EB/OL].[2021-05-10]. https://cites.org.
Cui K, Li W, James JG, et al. 2019. The first draft genome of Lophophorus:a step forward for Phasianidae genomic diversity and conservation[J]. Genomics, 111(6):1209-1215.
Evangelista PH, Kumar S, Stohlgren TJ, et al. 2008. Modelling invasion for a habitat generalist and a specialist plant species[J]. Diversity and Distributions, 14(5):808-817.
Fahrig L. 2003. Effects of habitat fragmentation on biodiversity[J]. Annual Review of Ecology Evolution & Systematics, 34:487-515.
Hijmans RJ, Cameron SE, Parra JL, et al. 2005. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 25(15):1965-1978.
O'Brien TG, Kinnaird MF, Wibisono HT. 2003. Crouching tigers, hidden prey:Sumatran tiger and prey populations in a tropical forest landscape[J]. Animal Conservation, 6:131-139.
Phillips SJ, Dudík M, Schapire RE. 2019. MaxEnt software for modeling species niches and distributions (Version 3.4.1)[EB/OL].[2021-5-10]. https://biodiversityinformatics.amnh.org/open_source/maxent/.
Swets JA. 1988. Measuring the accuracy of diagnostic systems[J]. Science, 240(4857):1285-1293.
Wang B, Xu Y, Price M, et al. 2021. Niche partitioning among three montane ground-dwelling pheasant species along multiple ecological dimensions[J]. IBIS, 163(1):171-182.
Wang B, Xu Y, Ran J. 2017. Predicting suitable habitat of the Chinese monal (Lophophorus lhuysii) using ecological niche modeling in the Qionglai Mountains, China[J/OL]. PeerJ, 5(7):e3477[2021-03-10]. https://doi.org/10.7717/peerj.3477.eCollection 2017.
Xu Y, Wang B, Zhong X, et al. 2020. Predicting range shifts of the Chinese monal (Lophophorus lhuysii) under climate change:implications for long-term conservation[J/OL]. Global Ecology and Conservation, 22:e01018[2021-03-10]. https://doi.org/10.1016/j.gecco.2020.e01018.
CopyRight©2021 Editorial Office of Sichuan Journal of Zoology 蜀ICP备08107403号-3