Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.2

Effects of Polystyrene Microplastics Exposure on the Growth of Gobiocypris rarus Larvae
Author of the article:HOU Miaomiao1,2,3, WANG Chunling2, XU Chunsen2,3, QIU Ning2,3, XIA Zhijun2,3, SU Liangxia2,3, WANG Jianwei2*
Author's Workplace:1. Dalian Ocean University, Dalian, Liaoning Province 116023, China;
2. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Key Words:microplastics; polystyrene; Gobiocypris rarus; larvae; subchronic toxic test
Abstract:In recent years, the worldwide presence of microplastics has become a new type of contaminant. However, the direct biological toxicity of microplastics still remains unclear. In this study, the effects of 3 sizes (0.1 μm, 1 μm, and 10 μm) of polystyrene (PS) microplastics at different concentrations (0.055 μg·L-1, 0.55 μg·L-1, 5.5 μg·L-1, 55 μg·L-1, and 550 μg·L-1) on the survival and growth of rare minnow (Gobiocypris rarus) larvae were studied. Accumulation and removal of PS microplastics in the body were also detected. After exposing the larvae to PS microplastics for 7 days, no significant differences on the survival and total length of G. rarus were found between the treatment and control groups (P>0.05). Fluorescent plastic particles were observed in gill and digestive tract in the exposed larvae. The fluorescence intensity enhanced in the exposed larvae with the increase of PS microplastics concentration. Plastic particles were significantly reduced from exposed larvae after they were reared in the water with no microplastics (P<0.05). It is suggested that although PS microplastics can be accumulated in the body, the removal rate was fast, and the environment-relevant concentrations of PS microplastics have no observed toxic effect on G. rarus larvae.
2020,39(2): 140-147 收稿日期:2019-11-15
分类号:Q959.4;R994.6
基金项目:国家自然科学青年基金项目(31802023)
作者简介:侯淼淼(1995-),硕士研究生,研究方向为水生态毒理学,E-mail:houmiao006@163.com
*通信作者:王剑伟,研究员,E-mail:wangjw@ihb.ac.cn
参考文献:
陈启晴, 杨守业, Hollert H, 等. 2018. 微塑料污染的水生生态毒性与载体作用[J]. 生态毒理学报, 13(1): 16-30.
丁剑楠, 张闪闪, 邹华, 等. 2017. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展[J]. 生态环境学报, 26(9): 1619-1626.
涂烨楠. 2018. 淡水水生生物摄食微塑料过程及影响研究[D]. 北京: 中国科学院大学.
王剑伟, 曹文宣. 2017. 中国本土鱼类模式生物稀有鮈鲫研究应用的历史与现状[J]. 生态毒理学报, 12(2): 20-33.
武芳竹, 曾江宁, 徐晓群, 等. 2019. 海洋微塑料污染现状及其对鱼类的生态毒理效应[J]. 海洋学报, 41(2): 85-98.
徐向荣, 孙承君, 季荣, 等. 2018. 加强海洋微塑料的生态和健康危害研究,提升风险管控能力[J]. 中国科学院院刊, 33(10): 1003-1011.
杨婧婧, 徐笠, 陆安祥, 等. 2018. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 37(3): 383-396.
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2013. 化学品稀有鮈鲫急性毒性试验: GB/T 29763-2013[S].
周倩, 章海波, 李远, 等. 2015. 海岸环境中微塑料污染及其生态效应研究进展[J]. 科学通报, 60(33): 3210-3220.
周永欣, 胡炜, 成水平. 1997. 稀有鮈鲫,大鳞泥鳅——新的七天亚慢性毒性试验材料[J]. 环境科学研究, 10(3): 26-29.
Andrady AL. 2011. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 62(8): 1596-1605.
Batel A, Linti F, Scherer M, et al. 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants[J]. Environmental Toxicology and Chemistry, 35(7): 1656-1666.
Browne MA, Dissanayake A, Galloway TS, et al. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.) [J]. Environmental Science & Technology, 42(13): 5026-5031.
Cole M, Lindeque P, Fileman E, et al. 2013. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology, 47(12): 6646-6655.
Desforges JPW, Galbraith M, Dangerfield N, et al. 2014. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 79(1-2): 94-99.
Dubaish F, Liebezeit G. 2013. Suspended microplastics and black carbon particles in the Jade system, southern North Sea[J/OL]. Water, Air & Soil Pollution, 224(2): 1352 [2019-06-10]. https://doi.org/10.1007/s11270-012-1352-9.
Eriksen M, Lebreton LCM, Carson HS, et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea[J/OL]. PLoS ONE, 9(12): e111913 [2019-05-30]. https://doi.org/10.1371/journal.pone.0111913.
Hämer J, Gutow L, Köhler A, et al. 2014. Fate of microplastics in the marine isopod Idotea emarginata[J]. Environmental Science & Technology, 48(22): 13451-13458.
Hussain N, Jaitley V, Florence AT. 2001.Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J]. Advanced Drug Delivery Reviews, 50(1-2): 107-142.
Ivar do Sul JA, Costa MF. 2014. The present and future of microplastic pollution in the marine environment[J]. Environmental Pollution, 185: 352-364.
Jovanović B, Gökdağ K, Güven O, et al. 2018. Virgin microplastics are not causing imminent harm to fish after dietary exposure[J]. Marine Pollution Bulletin, 130: 123-131.
Kaposi KL, Mos B, Kelaher BP, et al. 2014. Ingestion of microplastic has limited impact on a marine larva[J]. Environmental Science & Technology, 48(3): 1638-1645.
Koelmans AA, Bakir A, Burton GA, et al. 2016. Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies[J]. Environmental Science & Technology, 50(7): 3315-3326.
Law KL, Thompson RC. 2014. Microplastics in the seas[J]. Science, 345(6193): 144-145.
Lee KW, Shim WJ, Kwon OY, et al. 2013. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus[J]. Environmental Science & Technology, 47(19): 11278-11283.
Lei L, Wu S, Lu S, et al. 2018. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 619: 1-8.
Lu Y, Zhang Y, Deng Y, et al. 2016. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 50(7): 4054-4060.
Magni S, Gagné F, André C, et al. 2018. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia)[J]. Science of the Total Environment, 631: 778-788.
Mazurais D, Ernande B, Quazuguel P, et al. 2015. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae[J]. Marine Environmental Research, 112: 78-85.
Norén F. 2007. Small plastic particles in coastal Swedish waters[R]. KIMO Sweden: 1-11.
Oliveira M, Ribeiro A, Hylland K, et al. 2013. Single and combined effects of microplastics and pyrene on juveniles (0+group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae)[J]. Ecological Indicators, 34: 641-647.
Rainieri S, Conlledo N, Larsen BK, et al. 2018. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 162: 135-143.
Rochman CM, Hoh E, Kurobe T, et al. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 3: 3263.
Rochman CM, Kurobe T, Flores I, et al. 2014. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment[J]. Science of the Total Environment, 493: 656-661.
Smith-Llera D. 2019. You are eating plastic every day: what's in our food?[M]. Minnesota: Compass Point Books.
Thompson RC, Olsen Y, Mitchell RP, et al. 2004. Lost at sea: where is all the plastic?[J]. Science, 304(5672): 838.
Toussaint B, Raffael B, Angers-Loustau A, et al. 2019. Review of micro- and nanoplastic contamination in the food chain[J]. Food Additives & Contaminants: Part A, 36(5): 639-673.
USEPA. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms [S]. Washington, DC.
van Cauwenberghe L, Janssen CR. 2014. Microplastics in bivalves cultured for human consumption[J]. Environmental Pollution, 193: 65-70.
Veneman WJ, Spaink HP, Brun NR, et al. 2017. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae[J]. Aquatic Toxicology, 190: 112-120.
von Moos N, Burkhardt-Holm P, Köhler A. 2012. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science & Technology, 46(20): 11327-11335.
Wagner M, Lambert S. 2017. Freshwater microplastics: emerging environmental contaminants?[M/OL]. Springer Open [2019-05-10]. https://doi.org/10.1007/978-3-319-61615-5.
Wright SL, Thompson RC, Galloway TS. 2013. The physical impacts of microplastics on marine organisms: a review[J]. Environmental Pollution, 178: 483-492.
Zhao S, Zhu L, Wang T, et al. 2014. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 86(1-2): 562-568.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology