Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2019 Vol.38 No.4

Advances in the Study of the Interspecific Interaction Between Respiratory Pathogens Mediated by Pseudomonas aeruginosa Quorum-Sensing System
Author of the article:YUAN Yang, LI Jing, WANG Xinrong, ZHAO Kelei*
Author's Workplace:Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
Key Words:respiratory tract infection; Pseudomonas aeruginosa; quorum-sensing system; interspecific interaction
Abstract:Bacterial chronic respiratory infections are common diseases that threaten the health of people worldwide and restrict social and economic development. The complexity of respiratory tract environment and structure frequently lead to the colonization of a variety of bacterial pathogens, such as Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Candida albicans. These pathogens evolve complex interspecific relationships including cooperation, competition, and symbiosis as chronic lung infection progress. By forming a relatively stable community system, multiple pathogens can integrate to cope with the harsh living conditions of the respiratory tract, resulting in the failure of targeted treatment or recurrence of respiratory infections. At present, revealing the underlying interaction mechanism among coexisting bacterial pathogens is an emerging subject, and clinical evidences have indicated that the colonization of P. aeruginosa is closely related to the development of chronic respiratory infections, and this microorganism can use elaborate quorum-sensing system to dominate the growth and coexistence of other pathogens. Therefore, this paper reviews the interspecific relationship and interaction mechanism between P. aeruginosa and other common respiratory infection pathogens mediated by the quorum-sensing system, and this can facilitate the understanding of the correlation between pathogen-pathogen interactions and chronic respiratory infections, and provide new perspectives and directions for further improvement of clinical treatment programs, disease control and the development of novel anti-infective drugs.
2019,38(4): 472-480 收稿日期:2019-03-14
分类号:Q939.1;R378
基金项目:国家自然科学基金青年基金项目(31700111);四川省科学技术协会青年人才托举工程项目(2018RCTJ)
作者简介:袁阳(1995-),男,硕士,研究方向:病原菌互作机制
*通信作者:赵克雷,E-mail:zkl5228@163.com
参考文献:
官旭华, Silk BJ, Li WK, 等. 2011. 中国大陆肺炎发病率与死亡率:1985-2008年中英文文献的系统分析[J]. 公共卫生与预防医学, 22(1):14-19.
杨青, 俞云松, 林洁, 等. 2016. 2005-2014年CHINET呼吸道分离菌耐药性监测[J]. 中国感染与化疗杂志, 16(5):541-550.
张祎博, 孙景勇, 倪语星, 等. 2016. 2005-2014年CHINET铜绿假单胞菌耐药性监测[J]. 中国感染与化疗杂志, 16(2):141-145.
Alessandro C, Packman AI. 2014. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium[J]. PLoS ONE, 9(9):e107186. DOI:10.1371/journal.pone.0107186.
Alves PM, Albadi E, Withycombe C, et al. 2018. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed-biofilm[J]. Pathogens and Disease, 76(1):fty003. DOI:10.1093/femspd/fty003.
Armbruster CE, Hong W, Pang B, et al. 2010. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling[J]. mBio, 1(3):e00102-10. DOI:10.1128/mBio.00102-10.
Asfahl KL, Schuster M, Gibbs K. 2017. Social interactions in bacterial cell-cell signaling[J]. FEMS Microbiology Reviews, 41(1):92-107.
Balasubramanian D, Schneper L, Kumari H, et al. 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence[J]. Nucleic Acids Research, 41(1):1-20.
Bansal T, Englert D, Lee J, et al. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression[J]. Infection and Immunity, 75(9):4597-4607.
Bhargava N, Sharma P, Capalash N. 2012. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa[J]. Biofouling, 28(8):813-822.
Biswas L, Biswas R, Schlag M, et al. 2009. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 75(21):6910-6912.
Bruger E, Waters C. 2015. Sharing the sandbox:evolutionary mechanisms that maintain bacterial cooperation[J]. F1000 Research, 4:1504. DOI:10.12688/f1000research.7363.1.
Burmølle M, Webb JS, Rao D, et al. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms[J]. Applied and Environmental Microbiology, 72(6):3916-3923.
Caldwell CC, Chen Y,Goetzmann HS, et al. 2009. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis[J]. American Journal of Pathology, 175(6):2473-2488.
Chu W, Zere TR, Weber MM, et al. 2012. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling[J]. Applied and Environmental Microbiology, 78(2):411-419.
Cugini C, Calfee MW, Farrow JM, et al. 2010. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa[J]. Molecular Microbiology, 65(4):896-906.
Dalton T, Dowd SE, Wolcott RD, et al. 2011. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions[J]. PLoS ONE, 6(11):e27317. DOI:10.1371/journal.pone.0027317.
Dandekar AA, Greenberg EP. 2013. Microbiology:plan b for quorum sensing[J]. Nature Chemical Biology, 9(5):292-293.
Davishanna A, Piispanen AE, Stateva LI, et al. 2010. Farnesol and dodecanol effects on the Candida albicans Ras 1-cAMP signaling pathway and the regulation of morphogenesis[J]. Molecular Microbiology, 67(1):47-62.
Dent LL, Marshall DR, Pratap S, et al. 2010. Multidrug resistant Acinetobacter baumannii:a descriptive study in a city hospital[J]. BMC Infectious Diseases, 10(1):196. DOI:10.1186/1471-2334-10-196.
Diggle SP, Matthijs S, Wright VJ, et al. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment[J]. Chemistry & Biology (Cambridge), 14(1):87-96.
Domka J, Lee J, Wood TK. 2006. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling[J]. Applied and Environmental Microbiology, 72(4):2449-2459.
El-Azizi MA, Starks SE, Khardori N. 2004. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms[J]. Journal of Applied Microbiology, 96(5):1067-1073.
Frydenlund MC, Khademi SMH, Johansen HK, et al. 2015. Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction[J]. The ISME Journal, 10(6):1323-1336.
Fugère A, Séguin DL, Mitchell G, et al. 2014. Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients[J]. PLoS ONE, 9(1):e86705. DOI:10.1371/journal.pone.0086705.
Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Bacteriology, 176:269-275.
Gospodarek E, Bogiel T, Zalas-Wiecek P. 2009. Communication between microorganisms as a basis for production of virulence factors[J]. Polish Journal of Microbiology, 58(3):191-198.
Guo Q, Kong W, Jin S, et al. 2014. PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1[J]. Journal of Basic Microbiology, 54(7):633-643.
Gupta N, Haque A, Mukhopadhyay G, et al. 2005. Interactions between bacteria and Candida in the burn wound[J]. Burns, 31(3):375-378.
Hauser AR, Jain M, Barmeir M, et al. 2011. Clinical significance of microbial infection and adaptation in cystic fibrosis[J]. Clinical Microbiology Reviews, 24(1):29-70.
Heo YJ, Chung IY, Choi KB, et al. 2007. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains[J]. Journal of Microbiology and Biotechnology, 17(1):180-185.
Hoffman LR, Déziel E, D'Argenio DA, et al. 2006. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(52):19890-19895.
Hogan DA. 2002.Pseudomonas-Candida interactions:an ecological role for virulence factors[J]. Science, 296(5576):2229-2232.
Jensen PO, Bjarnsholt T, Phipps R, et al. 2007. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa[J]. Microbiology, 153(5):1329-1338.
Jimenez PN, Koch G, Thompson JA, et al. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa[J]. Microbiology and Molecular Biology Reviews, 76(1):46-65.
Kaleli I, Cevahir N, Demir M, et al. 2010. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens[J]. Mycoses, 50(1):74-78.
Keith P. 2003. Iron acquisition and its control in Pseudomonas aeruginosa many roads lead to rome[J]. Frontiers in Bioscience, 8(4):661-686.
Kerr JR, Taylor GW,Rutman A, et al. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth[J]. Journal of Clinical Pathology, 52(5):385-387.
Khare A, Tavazoie S. 2015. Multifactorial competition and resistance in a two-species bacterial system[J]. PLoS Genetics, 11(12):e1005715. DOI:10.1371/journal.pgen.1005715.
Korgaonkar A, Trivedi U, Rumbaugh KP, et al. 2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(3):1059-1064.
Lamont IL, Beare PA, Ochsner U, et al. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 99(10):7072-7077.
Lee KW, Periasamy S, Mukherjee M, et al. 2013. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm[J]. The ISME Journal, 8(4):894-907.
Lee J, Jayaraman A, Wood TK. 2007. Indole is an inter-species biofilm signal mediated by SdiA[J]. BMC Microbiology, 7(1):42. DOI:10.1186/1471-2180-7-42.
Li H, Li X, Wang Z,et al. 2015. Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner[J]. BMC Microbiology, 15:192. DOI:10.1186/s12866-015-0529-y.
Little AE, Robinson CJ, Peterson SB, et al. 2008. Rules of engagement:interspecies interactions that regulate microbial communities[J]. Annual Review of Microbiology, 62(1):375-401.
Lopes SP, Machado I, Pereira MO. 2011. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships[J]. Journal of Industrial Microbiology & Biotechnology, 38(1):133-140.
Manos J, Hu H, Rose BR, et al. 2013. Virulence factor expression patterns in Pseudomonas aeruginosa strains from infants with cystic fibrosis[J]. European Journal of Clinical Microbiology & Infectious Diseases, 32(12):1583-1592.
Mashburn LM, Jett AM, Akins DR, et al. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture[J]. Journal of Bacteriology, 187(2):554-566.
McAlester G, O'Gara F, Morrissey JP. 2008. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans[J]. Journal of Medical Microbiology, 57(5):563-569.
Michalopoulos A, Falagas ME. 2010. Treatment of acinetobacter infections[J]. Expert Opinion on Pharmacotherapy, 11(5):779-788.
Mitchell G, Séguin LD, Asselin AE, et al. 2010. Staphylococcus aureussigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide[J]. BMC Microbiology, 10(1):33.
Niu C, Clemmer KM, Bonomo RA, et al. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii[J]. Journal of Bacteriology, 190(9):3386-3392.
Nucleo E, Steffanoni L, Fugazza G, et al. 2009. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii[J]. BMC Microbiology, 9(1):270. DOI:10.1186/1471-2180-9-270.
Palmer KL, Mashburn LM, Singh PK, et al. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology[J]. Journal of Bacteriology, 187(15):5267-5277.
Pastar I, Nusbaum AG, Joel G, et al. 2013. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection[J]. PLoS ONE, 8(2):e56846. DOI:10.1371/journal.pone.0056846.
Peters BM, Jabrarizk MA, O'May GA, et al. 2012. Polymicrobial interactions:impact on pathogenesis and human disease[J]. Clinical Microbiology Reviews, 25(1):193-213.
Pragman AA, Berger JP, Williams BJ. 2016. Understanding persistent bacterial lung infections:clinical implications informed by the biology of the microbiota and biofilms[J]. Clinical Pulmonary Medicine, 23(2):57-66.
Sagel SD, Gibson RL, Emerson J, et al. 2009. Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis[J]. The Journal of Pediatrics, 154(2):183-188.
Schuster M, Lostroh CP, Ogi T, et al. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes:a transcriptome analysis[J]. Journal of Bacteriology, 185(7):2066-2079.
Short FL, Murdoch SL, Ryan RP. 2014. Polybacterial human disease:the ills of social networking[J]. Trends in Microbiology, 22(9):508-516.
Strateva T, Mitov I. 2011. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections[J]. Annals of Microbiology, 61(4):717-732.
Tomaras AP. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii:involvement of a novel chaperone-usher pili assembly system[J]. Microbiology, 149(12):3473-3484.
Trejo-Hernández A, Andrade-Domínguez A, Hernández M, et al. 2014. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms[J]. The ISME Journal, 8(10):1974-1988.
Vega NM, Allison KR, Samuels AN, et al. 2013. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(35):14420-14425.
Venturi V, Subramoni S. 2009. Future research trends in the major chemical language of bacteria[J]. Human Frontier Science Program, 3(2):105-116.
Waite RD, Curtis MA. 2009. Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms[J]. Journal of Bacteriology, 191(4):1349-1354.
Waters CM, Bassler BL. 2005. Quorum sensing:cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology, 21:319-346.
Wunderink RG, Waterer GW. 2014. Clinical practice. Community-acquired pneumonia[J]. New England Journal of Medicine, 370(6):543-551.
Yang L, Liu Y, Markussen T, et al. 2011. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa[J]. Pathogens & Disease, 62(3):339-347.
Yonker LM, Cigana C, Hurley BP, et al. 2015. Host-pathogen interplay in the respiratory environment of cystic fibrosis[J]. Journal of Cystic Fibrosis, 14(4):431-439.
Zhao K, Du L, Lin J, et al. 2018. Pseudomonas aeruginosa quorum-sensing and type VI secretion system can direct interspecific coexistence during evolution[J]. Frontiers in Microbiology, 9:2287. DOI:10.3389/fmicb.2018.02287.
Zhao K, Li W, Li J, et al. 2019. TesG is a type Ⅰ secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection[J]. Nature Microbiology, 4:459-469.
CopyRight©2019 Editorial Office of Sichuan Journal of Zoology