Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2019 Vol.38 No.3

Coexistence Mechanism of Dominant Birds in the Guiyang Ahahu National Wetland Park
Author of the article:CHEN Sikan1, YAN Yuying2*, ZENG Yajun2
Author's Workplace:1. Guizhou Institute of Forestry Inventory and Planning, Guiyang 550000, China;
2. Guizhou Academy of Forestry, Guiyang 550000, China
Key Words:niche overlap and separation; dominant birds; bird behavior; habitat type; city wetland
Abstract:Based on the field investigation in the Guiyang Ahahu National Wetland Park from September 2016 to February 2017 and from April to August 2018, the coexistence mechanism of 3 dominant birds (Pycnonotus xanthorrhous, Passer montanus and Garrulax sannio) was studied. The results showed that the 3 dominant birds had similar overall niche breadth, which were 0.862 1, 0.793 7 and 0.866 7, respectively. However, the niche breadth of Pycnonotus xanthorrhous was stable, while the niche breadth of Passer montanus was the widest in summer and the narrowest in winter, and the niche breadth of G. sannio was the narrowest in summer and the widest in autumn. The spatial overall niche breadth was Pycnonotus xanthorrhous (0.604 9) > G. sannio (0.387 6) > Passer montanus (0.215 8), and the 3 dominant birds reached the maximum niche breadth in the artificial habitat. The spatiotemporal niche overlap of the 3 birds was generally high. In terms of time, the highest degree of overlap was found between G. sannio and Passer montanus (0.985 3). In terms of spatial, the highest degree of overlap was found between Pycnonotus xanthorrhous and Passer montanus (0.873 2), followed by Pycnonotus xanthorrhous and G. sannio (0.831 6), and the lowest was between Passer montanus and G. sannio (0.481 1). The 3 dominant birds were urban adaptive species, but they were different on many ways, such as behavior space, diet, nest-site selection, habitat vertical and horizontal distribution. By doing these, the 3 dominant birds reached niche separation, and then stabled coexistence within communities.
2019,38(3): 340-348 收稿日期:2018-12-11
分类号:Q959.7;Q111.2+4
基金项目:贵州省林业厅青年基金项目:贵州省林业厅青年科技人才培养对象专项资金项目(黔林科合J字〔2016〕03号);贵州黎平石漠化生态系统定位观测研究站建设项目(2016-LYPT-DW-088);黔科合院士站〔2014〕4006;贵州省林业厅青年科技人才培养对象专项资金项目(黔林科合J〔2017〕04号)
作者简介:陈斯侃(1988-),男,硕士,工程师,研究方向:野生动物资源调查和林业调查规划,E-mail:314732524@qq.com
*通信作者:晏玉莹,E-mail:yanyuying1624@126.com
参考文献:
陈玉凯, 杨琦, 莫燕妮, 等. 2014. 海南岛霸王岭国家重点保护植物的生态位研究[J]. 植物生态学报, 38(6):576-584.
邓立斌, 颜伟, 汪贵庆. 2014. 贵州贵阳阿哈湖国家湿地公园维管植物区系初步研究[J]. 贵州师范大学学报(自然科学版), 32(1):6-9.
李凡, 徐炳庆, 吕振波, 等. 2018. 莱州湾鱼类群落优势种生态位[J]. 生态学报, 38(14):5195-5205.
李显森, 于振海, 孙珊, 等. 2013. 长江口及其毗邻海域鱼类群落优势种的生态位宽度与重叠[J]. 应用生态学报, 24(8):2353-2359.
陆健健, 何文珊, 童春富, 等. 2006. 湿地生态学[M]. 北京:高等教育出版社.
杨刚, 许洁, 王勇, 等. 2015. 城市公园植被特征对陆生鸟类集团的影响[J]. 生态学报, 35(14):4824-4835.
王维奎, 周材权, 龙帅, 等. 2008. 四川南充太和鹭科鸟类群落空间生态位和种间关系[J]. 四川动物, 27(2):178-182.
张航, 丁虎林, 刘伟, 等. 2014. 天童20 hm2常绿阔叶林样地优势鸟类时空多维度生态位分析[J]. 华东师范大学学报(自然科学版), 3:125-133.
张晶, 赵成章, 任悦, 等. 2018. 张掖国家湿地公园优势鸟类种群生态位研究[J]. 生态学报, 38(6):2213-2220.
赵正阶. 1995. 中国鸟类手册(上卷) 非雀形目[M]. 长春:吉林科学技术出版社.
赵正阶. 2001. 中国鸟类志(下卷)[M]. 长春:吉林科学技术出版社.
郑光美. 2017. 中国鸟类分类与分布名录(第三版)[M]. 北京:科学出版社.
郑光美. 2008. 鸟类学(第四版)[M]. 北京:北京师范大学出版社.
朱磊, 丁伟, 唐利洲, 等. 2010. 黄臀鹎秋冬季食性及取食生态位的初步观察[J]. 四川动物, 29(6):981-983.
Bibby CJ, Bugess ND, Hill DA, et al. 2000. Bird census techniques (second edition)[M]. London:Academic Press.
Bolnick DI, Svanbäck R, Araújo MS, et al. 2007. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(24):10075-10079.
Broennimann O, Treier UA, Miiller SH, et al. 2007. Evidence of climatic niche shift during biological invasion[J]. Ecology Letters, 10:701-709.
Davis AM, Glick TF. 1978. Urban ecosystems and island biogeography[J]. Environmental Conservation, (5):299-304.
Hurlbert SH. 1978. The measurement of niche overlap and some relatives[J]. Ecology, 59(1):67-77.
Horn HS. 1966. Measurement of "overlap" in comparative ecological studies[J]. American Naturalist, 100(914):419-424.
Jokimäki J, Suhonen J. 1998. Distribution and habitat selection of wintering birds in urban environments[J]. Landscape & Urban Planning, 39:253-263.
Nancy BG, Stanley HF, Nancy EG, et al. 2008. Global change and the ecology of cities[J]. Science, 319(5864):756-760.
Novcic I. 2016. Niche dynamics of shorebirds in Delaware Bay:foraging behavior, habitat choice and migration timing[J]. Acta Oecologica, 75:68-76.
Roberge JM, Angelstam P. 2006. Indicator species among resident forest birds-a cross-regional evaluation in northern Europe[J]. Biological Conservation, 130(1):134-147.
Torrenta R, Lacoste F, Villard MA. 2018. Loss and fragmentation of mature woodland reduce the habitat niche breadth of forest birds[J]. Landscape Ecology, 33(11):1865-1879.
Wang Y, Ding P, Chen S, et al. 2013. Nestedness of bird assemblages on urban woodlots:implications for conservation[J]. Landscape & Urban Planning, 111(1):59-67.
Zurita GA, Pe'Er G, Bellocq MI. 2017. Bird responses to forest loss are influence by habitat specialization[J]. Diversity & Distributions, 23(6):650-655.
CopyRight©2019 Editorial Office of Sichuan Journal of Zoology