Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2019 Vol.38 No.1

Preliminary Research of microRNA in Periplaneta americana
Author of the article:BAO Zheng1, YANG Mingyu2, ZHANG Xiuyue1, YUE Bisong1,2,3, FAN Zhenxin1*
Author's Workplace:1. Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
2. Sichuan Engineering Research Center for Medicinal Animals, Xichang, Sichuan Province 615000, China;
3. Sichuan Key Laboratory for Medicinal American Cockroach, Chengdu 610031, China
Key Words:Periplaneta americana; microRNA; differential expression
Abstract:American cockroach (Periplaneta americana) is known as one of the public health pests worldwide. Meanwhile, its extracts are valuable for medical use. In this study, sequencing of microRNAs of the reared cockroaches was carried out. A total of 12 155 616 and 9 847 263 sequences were obtained from the male and female individuals, respectively. The length of sequences mainly ranged from 18 nt to 23 nt with a bimodal distribution at 22 nt and 29 nt. Annotation of these clean reads were performed according to databases of Rfam and NCBI by Blastn. Finally, 57 known microRNAs and 152 novel microRNAs were identified from the male group, while 53 known microRNAs and 94 novel microRNAs were identified from the female group. Differential expression analysis indicated that only one microRNA (miR-750) was significantly up-regulated in female P. americana compared to that of the male. This is the first study concerning on the composition and function of microRNAs in P. americana at genomic level, and thus lay a foundation for further study on P. americana.
2019,38(1): 47-55 收稿日期:2018-05-10
分类号:Q78;Q915.819+.7
基金项目:好医生助研项目
作者简介:宝钲(1992—),男,硕士,从事生物信息学研究
*通信作者:范振鑫,E-mail:zxfan@scu.edu.cn
参考文献:
陈梦林. 2002. 蟑螂养殖技术[J]. 农村新技术, 10: 21-23.
晋家正, 李午佼, 牟必琴, 等. 2018. 药用美洲大蠊全基因组测序分析[J]. 四川动物, 37(2): 121-126.
王鹏飞, 许润春, 李江维, 等. 2015. 美洲大蠊油脂急性毒性及其拮抗美洲大蠊提取液肝脏保护作用的初步研究[J]. 现代中药研究与实践, 29(6): 34-36.
吴道勋, 邵维莉, 杨贤英, 等. 2016. 美洲大蠊抗肿瘤与免疫调节研究进展[J]. 亚太传统医药, 12(23): 48-51.
肖小芹, 汪世平, 徐绍锐, 等. 2007. 美洲大蠊提取物抗炎、镇痛作用的实验研究[J]. 中国病原生物学杂志, 2(2): 140-143.
张丹, 孙玉红, 李茂, 等. 2015. 美洲大蠊多肽提取物对荷瘤小鼠肿瘤生长及免疫功能的影响[J]. 中国新药杂志, 24(6): 681-686.
Bartel DP, Chen CZ. 2004. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs[J]. Nature Reviews Genetics, 5(5): 396-400.
Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 116(2): 281-297.
Belles X, Cristino AS, Tanaka ED, et al. 2012. Insect microRNAs: from molecular mechanisms to biological roles[M]. Gilbert LI. Insect molecular biology and biochemistry. New York: Academic Press: 30-56.
Brennecke J, Hipfner DR, Stark A, et al. 2003. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J]. Cell, 113(1): 25-36.
Chen Q, Lu L, Hua H, et al. 2012. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens)[J]. PLoS ONE, 7(3): e32860. DOI: 10.1371/journal.pone.0032860.
Chen W, Jiang GF, Sun SH, et al. 2013. Identification of differentially expressed genes in American cockroach ovaries and testes by suppression subtractive hybridization and the prediction of its miRNAs[J]. Molecular Genetics and Genomics, 288(11): 627-638.
Chen W, Liu YX, Jiang GF. 2015. De novo assembly and characterization of the testis transcriptome and development of EST-SSR markers in the cockroach Periplaneta americana[J]. Scientific Reports, 5: 11144.
Cristino AS, Tanaka ED, Rubio M, et al. 2011. Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.)(Dictyoptera, Blattellidae)[J]. PLoS ONE, 6(4): e19350. DOI: 10.1371/journal.pone.0019350.
Duisters RF, Tijsen AJ, Schroen B, et al. 2009. MiR-133 and miR-30 regulate connective tissue growth factor[J]. Circulation Research, 104(2): 170-178.
Enright AJ, John B, Gaul U, et al. 2003. MicroRNA targets in Drosophila[J]. Genome Biology, 5(1): R1.
Friedländer MR, Mackowiak SD, Li N, et al. 2011. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 40(1): 37-52.
He J, Chen Q, Wei Y, et al. 2016. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(3): 584-589.
Huang Y, Dou W, Liu B, et al. 2014. Deep sequencing of small RNA libraries reveals dynamic expression patterns of microRNAs in multiple developmental stages of Bactrocera dorsalis[J]. Insect Molecular Biology, 23(5): 656-667.
Jagadeeswaran G, Zheng Y, Sumathipala N, et al. 2010. Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel-pam microRNAs and microRNA-stars during silkworm development[J]. BMC Genomics, 11(1): 52.
Jiang L, Liu X, Xia CL,et al. 2012. Research advance on chemical constituents and anti-tumor effects of Periplaneta americana L.[J]. Medicinal Plant, 3(11): 95-97.
Kaewkascholkul N, Somboonviwat K, Asakawa S, et al. 2016. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection[J]. Developmental & Comparative Immunology, 60: 191-201.
Kanehisa M, Goto S, Sato Y, et al. 2012. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Research, 40(D1): D109-D114.
Karres JS, Hilgers V, Carrera I, et al. 2007. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila[J]. Cell, 131(1): 136-145.
Kawaoka S, Arai Y, Kadota K, et al. 2011. Zygotic amplification of secondary piRNAs during silkworm embryogenesis[J]. RNA, 17(7): 1401-1407.
Kawasaki H, Taira K. 2003. Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells[J]. Nature, 423(6942): 838-842.
Kim IW, Lee JH, Subramaniyam S, et al. 2016. De novo transcriptome analysis and detection of antimicrobial peptides of the American cockroach Periplaneta americana (Linnaeus)[J]. PLoS ONE, 11(5): e0155304. DOI: 10.1371/journal.pone.0155304.
Krüger J, Rehmsmeier M. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible[J]. Nucleic Acids Research, 34(suppl_2): W451-W454.
Lee RC, Ambros V. 2001. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science, 294(5543): 862-864.
Li S, Zhu S, Jia Q, et al. 2018. The genomic and functional landscapes of developmental plasticity in the American cockroach[J]. Nature Communications, 9(1): 1008.
Li ZQ, He P, Zhang YN, et al. 2017. Molecular and functional characterization of three odorant-binding protein from Periplaneta americana[J]. PLoS ONE, 12(1): e0170072. DOI: 10.1371/journal.pone.0170072.
Llave C, Xie Z, Kasschau KD, et al. 2002. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 297(5589): 2053-2056.
Lucas KJ, Roy S, Ha J, et al. 2015. MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(5): 1440-1445.
Lund AH. 2010. miR-10 in development and cancer[J]. Cell Death & Differentiation, 17(2): 209-214.
Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 35(suppl_2): W182-W185.
Nishino H, Yoritsune A, Mizunami M. 2010. Postembryonic development of sexually dimorphic glomeruli and related interneurons in the cockroach Periplaneta americana[J]. Neuroscience Letters, 469(1): 60-64.
Paulo D, Azeredo-Espin A, Canesin L, et al. 2017. Identification and characterization of microRNAs in the screwworm flies Cochliomyia hominivorax and Cochliomyia macellaria (Diptera: Calliphoridae)[J]. Insect Molecular Biology, 26(1): 46-57.
Rebijith K, Asokan R, Hande HR, et al. 2016. The first report of mirnas from a Thysanopteran insect, Thrips palmi Karny using high-throughput sequencing[J]. PLoS ONE, 11(9): e0163635. DOI: 10.1371/journal.pone.0163635.
Reinhart BJ, Slack FJ, Basson M, et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 403(6772): 901-906.
Rubio M, Montañez R, Perez L, et al. 2013. Regulation of atrophin by both strands of the mir-8 precursor[J]. Insect Biochemistry and Molecular Biology, 43(11): 1009-1014.
Salama EM. 2015. A novel use for potassium alum as controlling agent against Periplaneta americana (Dictyoptera: Blattidae)[J]. Journal of Economic Entomology, 108(6): 2620-2629.
Skalsky RL, Vanlandingham DL, Scholle F, et al. 2010. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus[J]. BMC Genomics, 11(1): 119.
Slack FJ, Basson M, Liu ZC, et al. 2000. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor[J]. Molecular Cell, 5(4): 659-669.
Surridge AK, Lopez-Gomollon S, Moxon S, et al. 2011. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene[J]. BMC Genomics, 12(1): 62.
Tamaki FK, Pimentel AC, Dias AB, et al. 2014. Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana[J]. Journal of Insect Physiology, 70: 22-35.
Wang XY, He ZC, Song LY, et al. 2011. Chemotherapeutic effects of bioassay-guided extracts of the American cockroach, Periplaneta americana[J]. Integrative Cancer Therapies, 10(3): NP12-NP23.
Wei Y, Chen S, Yang P, et al. 2009. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust[J]. Genome Biology, 10(1): R6.
Wicher D, Söhler S, Gundel M, et al. 2006. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity, and locomotion[J]. Journal of Neurophysiology, 95(4): 2314-2325.
Yu X, Zhou Q, Li SC, et al. 2008. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages[J]. PLoS ONE, 3(8): e2997. DOI: 10.1371/journal.pone.0002997.
Zhang J, Zhang Y, Li J, et al. 2016. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response[J]. PLoS ONE, 11(5): e0155254. DOI:10.1371/journal.pone.0155254.
Zhang X, Zheng Y, Jagadeeswaran G, et al. 2012. Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 42(6): 381-395.
Zhang XD, Zhang YH, Ling YH, et al. 2013. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus)[J]. BMC Genomics, 14(1): 1.
Zhao Y, Srivastava D. 2007. A developmental view of microRNA function[J]. Trends in Biochemical Sciences, 32(4): 189-197.
Zhou Y, Liu Y, Yan H, et al. 2014. MiR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication[J]. Parasites & Vectors, 7(1): 488. DOI:10.11861s 13071-014-0488-4.
CopyRight©2019 Editorial Office of Sichuan Journal of Zoology