Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2018 Vol.37 No.5

Relationship Between Tensile Behaviors and Biological Function of Egg-Case Silks of Argiope bruennichi
Author of the article:JIANG Ping1, WU Lihua2, LIAO Xinjun1, LONG Wanwan1, WANG Anping1, GUO Cong3*
Author's Workplace:1. Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-environment and Resources, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi Province 343009, China;
2. Business College, Jinggangshan University, Ji'an, Jiangxi Province 343009, China;
3. Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
Key Words:Argiope bruennichi; egg-case silk; tensile behavior; repeated stretching; biological function
Abstract:To investigate the relationship between tensile behaviors and bio-function of egg-case silks, the scaffolding silk, inner cover silk and outer silk cover, 3 types of egg-case silks of Argiope bruennichi were examined using electronic single-fiber tensile instron and electronic scale. The results showed that compared with the scaffolding silk, the tensile behavior curve of the inner cover silk was increased in the elastic region, small extent in the yield region, and buffering state in the reinforcing region. The scaffolding silk presented good tenacity and reproducibility of tensile behavior and repeated stretching; the forces at yield and broken point of the 3 egg-case silk samples were higher than egg weights, indicating that the females will make greater investments on the protection of their offsprings. The mechanical properties (e.g. break strength, extensibility) of the inner cover silk matched to their biological or ecological functions, respectively. These findings may be helpful to guide the biomimetic design of novel fiber materials.
2018,37(5): 556-562 收稿日期:2017-04-25
蒋平, 刘姝, 卓春晖. 2010a. 干燥与拉伸对蜘蛛拖牵丝超收缩性能的影响[J]. 材料科学与工程学报, 28(3):352-356.
蒋平, 吕太勇, 肖永红, 等. 2010b. 悦目金蛛和棒络新妇卵袋丝物理化学结构表征及其力学性能研究[J]. 生物物理学报, 26(2):149-163.
蒋平, 吕太勇, 肖永红, 等. 2011a. 横纹金蛛卵袋结构与纤维组成[J]. 动物学杂志, 46(4):92-101.
蒋平, 吕太勇, 肖永红, 等. 2011b. 三种不同功能蛛丝的超微结构与拉伸力学行为[J]. 材料科学与工程学报, 29(5):734-741.
蒋平, 乔圆圆, 柯坫华, 等. 2011c. 横纹金蛛多次产卵生物量分配初步研究[J]. 动物学杂志, 46(2):90-96.
蒋平, 吴梦玲, 肖永红, 等. 2010c. 棒络新妇卵袋丝氨基酸组成及其力学性能[J]. 纺织学报, 31(5):1-5.
杨湧, 陈新, 周平, 等. 2001. 不同温度下桑蚕丝的力学性能[J]. 高等学校化学学报, 22(9):1592-1596.
Blackledge TA, Kuntner M, Marhabaie M, et al. 2012a. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs[J]. Scientific Reports, 2:833. DOI:10.1038/srep00833.
Blackledge TA, Pérez-Rigueiro J, Plaza GR, et al. 2012b. Sequential origin in the high performance properties of orb spider dragline silk[J]. Scientific Reports, 2:782. DOI:10.1038/srep00782.
Blamires SJ, Blackledge TA, Tso I-Min. 2017. Physicochemical property variation in spider silk:ecology, evolution, and synthetic production[J]. Annual Review of Entomology, 62:443-460.
Danks HV. 2004. The role of insect cocoons in cold conditions[J]. European Journal of Enotomology, 101:433-437.
Dong Z, Lewis RV, Middaugh CR. 1991. Molecular mechanisms of spider silk elasticity[J]. Archives of Biochemistry and Biophysics, 284(2):53-57.
Elices M, Pérez-Rigueiro J, Plaza GR, et al. 2005. Finding inspiration in Argiope trifasciata spider silk fibers[J]. The Journal of The Minerals, Metals & Materials Society, 57(2):60-66.
Fang GQ, Huang YF, Tang YZ, et al. 2016. Insights into silk formation process:correlation of mechanical properties and structural evolution during artificial spinning of silk fibers[J]. ACS Biomaterials Science & Engineering, 2(11):1992-2000.
Frische S, Maunsbach AB, Vollrath F. 1998. Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy[J]. Journal of Microscopy, 189(1):64-70.
Garwood RJ, Dunlop JA, Selden PA, et al. 2016. Almost a spider:a 305-million-year-old fossil arachnid and spider origins[J]. Proceedings of the Royal Society B:Biological Science, 283(1827):1-8.
Gosline JM, Demont ME, Denny MW. 1986. The strucure and properties of spider silk[J]. Endeavor, 10(1):37-43.
Guinea GV, Elices M, Real JI, et al. 2005. Reproducibility of the tensile properties of spider (Argiope trifasciata) silk obtained by forced[J]. Journal of Experimental Zoology, 303(1):37-44.
Guinea GV, Pérez-Rigueiro J, Plaza GR, et al. 2006. Volume constancy during stretching of spider silk[J]. Biomacromolecules, 7(7):2173-2177.
Jiang P, Guo C, Lv TY, et al. 2011. Structure, composition and mechanical properties of the silk fibres of the egg case of the Joro spider, Nephila clavata (Araneae, Nephilidae)[J]. Journal of Biosciences, 36(5):897-910.
Jiang P, Liu HF, Wang CH, et al. 2006. Tensile behavior and morphology of differently degummed silkworm cocoon silk fibres[J]. Materials Letters, (60):919-925.
Jiang P, Lv TY, Xiao YH, et al. 2011. Morphology, fibrous composition and tensile properties of drag-silk produced by two species of orb spider[J]. International Journal of Materials Research, 102(10):1261-1269.
Jiang P, Maríbuyé N, Madurga R, et al. 2014. Spider silk gut:development and characterization of a rovel strong spider silk[J]. Scientific Reports, 4:7326. DOI:10.1038/srep07326.
Kubik S. 2002. High-performance fibers from spider silk[J]. Angewandte Chemie International Edition, 41(15):2721-2723.
Lefèvre T, Auger M. 2016. Spider silk as a blueprint for greener materials:a review[J]. International Materials Reviews, 6(2):127-153.
Madurga R, Plaza GR, Blackledge TA, et al. 2016. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter[J]. Scientific Reports, 6:18991. DOI:10.1038/srep18991.
Moore AM, Tran K. 1999. Material properties of cobweb silk from the black widow spider Latrodectus hesperus[J]. International Journal of Biological Macromolecules, 24(2-3):277-282.
Pérez-Rigueiro J, Elices M, Llorca J, et al. 2001. Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web[J]. Journal of Applied Polymer Science, 82(9):2245-2251.
Pérez-Rigueiro J, Elices M, Llorca J, et al. 2002. Effect of degumming on the tensile properties of silkworm (Bombyx mori) silk fiber[J]. Journal of Applied Polymer Science, 84(7):1431-1437.
Sirichaisit J, Young RJ, Vollrath F. 2000. Molecular deformation in spider dragline silk subjected to stress[J]. Polymer, 41(3):1223-1227.
Swanson BO, Blackledge TA, Hayashi CY, et al. 2006. Spider dragline silk:correlated and mosaic evolution in high-performance biological materials[J]. Evolution, 60(12):2539-2551.
Viney C. 2004. Self-assembly as a route to fibrous materials:concepts, opportunities and challenges[J]. Current Opinion in Solid State & Materials Science, 8(2):95-101.
Vollrath F. 2000. Strength and structure of spider' silks[J]. Biological Macromolecules, 74(2):67-83.
World Spider Catalog. 2018. World spider catalog, version 19[EB/OL].[2018-01-20].
Zhao HP, Feng XQ, Yu SW, et al. 2005. Mechanical properties of silkworm cocoons[J]. Polymer, 46(21):9192-9201.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology