Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2017 Vol.36 No.5

Analysis of Repetitive Sequences in Periplaneta americanana Genome
Author of the article:MOU Biqin1, YAN Chaochao1, LI Wujiao1, LI Jing1, SHEN Yongmei2, YUE Bisong1*
Author's Workplace:1. Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China;
2. Sichuan Key Laboratory of Medicinal Periplaneta americana, Chengdu 610081, China
Key Words:Periplaneta americana; genome; repetitive sequences; transposable element; BovB retrotransposon; phylogeny
Abstract:Repetitive sequences constitute a large fraction of a eukaryote genome. Some classes of repetitive sequences, such as LINEs, which are a member of autonomous transposons, have been widely applied in molecular phylogenetic and genetic diversity studies of insects. In this study, de novo prediction and homology alignment were used to search the repetitive sequences in Periplaneta americana genome, and the results showed that the screened repetitive sequences accounted for approximately 62% of the genome. Among interspersed repetitive sequences, the DNA transposons constituted 16.18% of the whole genome. In retrotransposons, LINEs accounted for 13.64% of the genome followed by SINE (3.52%) and LTR (1.32%), respectively. The BovB superfamily in LINEs was the most abundant (6.73%) compared to other classes of transposons.The proportion of all classes of transposable elements in P. americana were higher than that of Blattella germanica except the LTRs. According to the integrality of the reverse transcriptase of retrotransposons, similarities and genetic distance of the amino acid sequences, a kind of BovB retrotransposons were identified in P. americana genome and named RTE-1_PAm. Phylogenetic analyses based on the amino acid sequences of BovB reverse transcriptase indicated that P. americana shared closer relationship with Zootermopsis nevadensis than with B. germanica which are both Blattidae. The difference of phylogenetic analyses results among these insects inferred by using retrotransposons and karyogene suggested an independent evolutional history of TEs relative to the host karyogene.
2017,36(5): 540-547 收稿日期:2017-02-22
Adelson DL, Raison JM, Edgar RC. 2009. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome[J]. Proceedings of the National Academy of Sciences, 106(31):12855-12860.
Arcà B, Savakis C. 2000. Distribution of the transposable element Minos in the genus Drosophila[J]. Genetica, 108(3):263.
Arensburger P, Megy K, Waterhouse RM, et al. 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics[J]. Science, 330(6000):86-88.
Bao W, Kojima KK, Kohany O. 2015.Repbase update, a database of repetitive elements in eukaryotic genomes[J]. Mobile DNA, 6(1):11.
Chalopin D, Fan S, Simakov O, et al. 2014. Evolutionary active transposable elements in the genome of the coelacanth[J]. Journal of Experimental Zoology Part B Molecular & Developmental Evolution, 322(6):322-333.
Chalopin D, Naville M, Plard F, et al. 2015. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates[J]. Genome Biology Evolution, 7(2):567-580.
Charlesworth B, Sniegowski P, Stephan W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes[J]. Nature, 371(6494):215-220.
Clark AG, Eisen MB. 2007. Evolution of genes and genomes on the Drosophila phylogeny[J]. Nature, 450(7167):203-218.
Clark JB, Kidwell MG. 1997. A phylogenetic perspective on P transposable element evolution in Drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 94(21):11428.
Consortium THG, Dasmahapatra KK, Walters C, et al. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species[J]. Nature, 487(7405):94-98.
Eickbush TH, Malik HS, Eickbush TH. 2002. Origins and evolution of retrotransposons[J]. Mobile DNA:1111-1144.
Gentles AJ, Wakefield MJ, Kohany O, et al. 2007. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica[J]. Genome Research, 17(7):992-1004.
Hu Q, Ma T, Wang K, et al. 2012. The yak genome database an integrative database for studying yak biology and high-altitude adaption[J]. BMC Genomics, 13(2):600.
Huang Y, Niu B, Gao Y, et al. 2010. CD-HIT suite:a web server for clustering and comparing biological sequences[J]. Bioinformatics, 26(5):680-682.
International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome[J]. Nature, 409:860-921.
Jurka J, Kapitonov VV, Pavlicek A, et al. 2005. Repbase update, a database of eukaryotic repetitive elements[J]. Cytogenetic & Genome Research, 110(1-4):462.
Kazazian HH. 2004. Mobile elements:drivers of genome evolution[J]. Science, 303(5664):1626-1632.
Kidwell M, Lisch D. 2002.Transposable elements as sources of genomic variation[M]//Craig NL, Cralgie R, Gellert M, et al. Mobile DNA Ⅱ. Washington DC:ASM Press:59-90.
Kordis D. 2009. Transposable elements in reptilian and avian (sauropsida) genomes[J]. Cytogenetic & Genome Research, 127(2-4):94-111.
Langley CH, Montgomery E, Hudson R, et al. 1988. On the role of unequal exchange in the containment of transposable element copy number[J]. Genetics Research, 52(3):223-235.
Lavoie CA, Platt RN, Novick PA, et al. 2013. Transposable element evolution in Heliconius, suggests genome diversity within Lepidoptera[J]. Mobile DNA, 4(1):21.
Le RA, Capy P. 2006. Population genetics models of competition between transposable element subfamilies[J]. Genetics, 174(2):785-793.
Love RR, Weisenfeld NI, Jaffe DB, et al. 2016. Evaluation of DISCOVAR de novo, using a mosquito sample for cost-effective short-read genome assembly[J]. BMC Genomics, 17(1):1-10.
Löytynoja A, Goldman N. 2010. webPRANK:a phylogeny-aware multiple sequence aligner with interactive alignment browser[J]. BMC Bioinformatics, 11(1):1-6.
Malik HS, Eickbush TH. 1998. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs[J]. Molecular Biology and Evolution, 15(9):1123-1134.
Misof B, Liu S, Meusemann K, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution[J]. Science, 346(346):763-767.
Morton WA, Kortschak RD, Gardner MG, et al. 2012. Widespread horizontal transfer of retrotransposons[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(3):1012-1016.
Ohshima K, Hamada M, Terai Y, et al. 1996. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements[J]. Molecular & Cellular Biology, 16(7):3756-3764.
Oliver KR, Greene WK. 2009. Transposable elements:powerful facilitators of evolution[J]. Bioessays, 31(7):703-714.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 19(12):1572-1574.
Sahlin K, Chikhi R, Arvestad L. 2016. Assembly scaffolding with PE-contaminated mate-pair libraries[J]. Bioinformatics, 32(13):btw064.
Sahlin K, Vezzi F, Nystedt B, et al. 2014. BESST-efficient scaffolding of large fragmented assemblies[J]. BMC Bioinformatics, 15(1):281.
Sánchezgracia A, Maside X, Charlesworth B. 2005.High rate of horizontal transfer of transposable elements in Drosophila[J]. Trends in Genetics, 21(4):200.
Sinkins S. 2007. Genome sequence of Aedes aegypti, a major arbovirus vector[J]. Science, 316(5832):1718-1723.
Smit A, Hubley R. 2008-2015. RepeatModeler open-1.0[EB/OL]. URL:
Smit A, Hubley R, Green P. 2013-2015. RepeatMasker open-4.0[EB/OL]. URL:
Sormacheva I, Smyshlyaev G, Mayorov V, et al. 2012. Vertical evolution and horizontal transfer of CR1 non-LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species[J]. Molecular Biology & Evolution, 29(12):3685-3702.
Sun C, Mueller RL. 2014. Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders[J]. Genome Biology & Evolution, 6(7):1818-1829.
Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology & Evolution, 28(10):2731-2739.
Tay WT, Behere GT, Batterham P, et al. 2010. Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes[J]. BMC Evolutionary Biology, 10(1):144.
Terrapon N, Li C, Robertson HM, et al. 2014. Molecular traces of alternative social organization in a termite genome[J]. Nature Communications, 5(6183):3636.
Thompson JD. 1999.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 22(22):4673-4680.
Webb CHT, Riccitelli NJ, Ruminski DJ, et al. 2011. Widespread occurrence of self-cleaving ribozymes[J]. Science, 326(5955):953.
Zhang HH, Feschotte C, Han MJ, et al.2014. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals[J]. Genome Biology & Evolution, 6(6):1375.
Zhao FQ, Qi J, Schuster SC. 2009. Tracking the past:interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius[J]. Genome Research, 19(19):1384-1392.
CopyRight©2017 Editorial Office of Sichuan Journal of Zoology