Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2017 Vol.36 No.2

Effect of the Barrier Caused by the Impoundments of the Xiangjiaba and Xiluodu Hydropower Plants on the Downstream Movement of Different Age Groups of Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874)
Author of the article:YANG Zhi*, TANG Huiyuan, GONG Yun, DONG Chun, GAO Shaobo, XIONG Meihua, CHEN Xiaojuan
Author's Workplace:Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
Key Words:huge hydropower plant; barrier effect; cascade cumulative effect; Coreius guichenoti; catch per unit effort
Abstract:Fishes depend upon unrestricted upward and downward movements between the habitats of different key life-history stages for the completion of the life cycle. The dams and diversion structures can hinder the movements causing the so-called "barrier effect" which is a key factor affecting fish migration. The migration route of Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874), an important migratory fish species in the upper reaches of the Yangtze River, is inevitably affected by the builds of the Xiangjiaba and Xiluodu hydropower plants located on the lower reaches of Jinsha River. However, whether the impoundments of the Xiangjiaba and Xiluodu Reservoirs can significantly block the downward movements ofC. guichenoti individuals, and whether display different barrier degrees for different age groups, are still remain unknown. Based on the C. guichenoti individuals that sampled from the Yongshan and Yibin sections in the upper reaches of the Yangtze River from 2012 to 2014, the barrier effect caused by the impoundments of the Xiangjiaba and Xiluodu hydropower plants on the downstream movement of different age groups of C. guichenoti were studied by using the method of relative abundance comparison (number percentage and catch per unit effort). The results showed that:1) the impoundments of the Xiangjiaba and Xiluodu Reservoirs had caused obvious blocking effect for downward movement of C. guichenoti; 2) the barrier effect resulted from the impoundments of the Xiangjiaba and Xiluodu Reservoirs was the most obvious and serious for the downward movements of 1 year-old individuals; 3) compare to a single large reservoir and dam, a cascade of large reservoirs and dams had a more serious barrier effect for the downstream movement of C. guichenoti. This study can provide basic data for the resource protection of C. guichenoti in the lower reaches of Jinsha River.
2017,36(2): 161-167 收稿日期:2016-09-21
曹玉琼. 2003. 异鳔鳅鮀的年龄与生长、繁殖生物学研究[D]. 武汉:华中农业大学.
程鹏. 2008. 长江上游圆口铜鱼的生物学研究[D]. 武汉:华中农业大学.
丁瑞华. 1994. 四川鱼类志[M]. 成都:四川科学技术出版社:276-278.
高少波, 唐会元, 陈胜, 等. 2015. 金沙江一期工程对保护区圆口铜鱼早期资源补充的影响[J]. 水生态学杂志, 36(2):6-10.
李雷, 危起伟, 吴金明, 等. 2013. 长江宜宾江段渔业资源现状调查[J]. 长江流域资源与环境, 22(11):1449-1457.
刘乐和, 吴国犀, 王志玲. 1990. 葛洲坝水利枢纽兴建后长江干流铜鱼和圆口铜鱼的繁殖生态[J]. 水生生物学报, (3):205-215.
马琴, 林鹏程, 刘焕章, 等. 2014. 长江宜昌江段三层流刺网对鱼类资源影响的分析[J]. 四川动物, 33(5):762-767.
母红霞. 2014. 长江三峡水库库尾江段及三峡坝下鱼类早期资源生态学研究[D]. 北京:中国科学院大学:101.
唐会元, 杨志, 高少波, 等. 2012. 金沙江中游圆口铜鱼早期资源现状[J]. 四川动物, 31(3):416-425.
涂志英, 李丽萍, 袁喜, 等. 2016. 圆口铜鱼幼鱼可持续游泳能力及活动代谢研究[J]. 淡水渔业, 46(1):33-38.
危起伟, 王剑伟, 陈大庆, 等. 2012. 长江上游珍稀特有鱼类国家级自然保护区科学考察报告[M]. 北京:科学出版社:36, 156-157.
杨少荣, 马宝珊, 孔焰, 等. 2010. 三峡库区木洞江段圆口铜鱼幼鱼的生长特征及资源保护[J]. 长江流域资源与环境, 19(Z2):52-57.
杨志, 唐会元, 朱迪, 等. 2015. 三峡水库175 m试验性蓄水期库区及其上游江段鱼类群落结构时空分布格局[J]. 生态学报, 35(15):5064-5075.
杨志, 万力, 陶江平, 等. 2011. 长江干流圆口铜鱼的年龄与生长研究[J]. 水生态学杂志, 32(4):46-52.
余志堂, 梁秩燊, 易伯鲁. 1984. 铜鱼和圆口铜鱼的早期发育[J]. 水生生物学报, (4):371-388.
张轶超. 2009. 大坝建设对长江上游圆口铜鱼和长鳍吻鮈自然繁殖的影响[D]. 北京:中国科学院水生生物研究所:21-50.
Armstrong JD, Kemp PS, Kennedy GJA, et al. 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams[J]. Fisheries Research, 62(2):143-170.
Baxter RM. 1977. Environment effects of dams and impoundments[J]. Annual Review of Ecology and Systematics, 8(1):255-283.
Banks JW. 2006. A review of the literature on the upstream migration of adult Salmonids[J]. Journal of Fish Biology, 1(2):85-136.
Cheng F, Li W, Castello L, et al. 2015. Potential effects of dam cascade on fish:lessons from the Yangtze River[J]. Reviews in Fish Biology & Fisheries, 25(3):1-17.
Gao X, Zeng Y, Wang JW, et al. 2010. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir[J]. Environmental Biology of Fishes, 87(2):163-173.
Giorgi AE, Hillman TW, Stevenson JR, et al. 1997. Factors that influence the downstream migration rates of juvenile salmon and steelhead through the hydroelectric system in the mid-Columbia River Basin[J]. North American Journal of Fisheries Management, 17(17):268-282.
Hahn L, Karl E, Carosfeld J, et al. 2007. Preliminary study on the application of radio-telemetry techniques to evaluate movements of fish in the Lateral canal at Itaipu Dam, Brazil[J]. Neotropical Ichthyology, 5(2):103-108.
Hvidsten NA, Jensen AJ, Vivaas H, et al. 1995. Downstream migration of Atlantic salmon smolts in relation to water flow, water temperature, moon phase and social behavior[J]. Nordic Journal of Freshwater Research, 70:38-48.
Jiménez-Segura LF, Palacio J, Leite R. 2010. River flooding and reproduction of migratory fish species in the Magdalena River Basin, Colombia[J]. Ecology of Freshwater Fish, 19(2):178-186.
Kapuscinski KL, Farrell JM. 2014. Habitat factors influencing fish assemblages at muskellunge nursery sites[J]. Journal of Great Lakes Research, 40(1):135-147.
Matthew LK, Mary LM, Charles TB, et al. 2009. Effects of body size and river environment on the upstream migration of adult Pacific lampreys[J]. North American Journal of Fisheries Management, 29(5):1214-1224.
Mims MC, Olden JD. 2013. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies[J]. Freshwater Biology, 58(58):50-62.
Mtada OSM. 1987. The influence of thermal stratification on pelagic fish yields in Lake Kariba, Zambia/Zimbabwe[J]. Journal of Fish Biology, 30(2):127-133.
Murchie KJ, Hair KPE, Pullen CE, et al. 2008. Fish response to modified flow regimes in regulated rivers:research methods, effects and opportunities[J]. River Research & Applications, 24(2):197-217.
Orell P, Erkinaro J, Svenning MA, et al. 2007. Synchrony in the downstream migration of smolts and upstream migration of adult Atlantic salmon in the subarctic River Utsjoki[J]. Journal of Fish Biology, 71(6):1735-1750.
Pelicice FM, Pompeu PS, Agostinho AA. 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish[J]. Fish and Fisheries, 16(4):697-715.
Pess GR, Mchenry ML, Beechie TJ, et al. 2016. Biological impacts of the Elwha River dams and potential Salmonid responses to dam removal[J]. Northwest Science, 82(Special 1):72-90.
Sommer TR, Nobriga ML, Harrell WC, et al. 2001. Floodplain rearing of juvenile chinook salmon:evidence of enhanced growth and survival[J]. Canadian Journal of Fisheries & Aquatic Sciences, 58(2):325-333.
Sloane RD. 1984. Upstream migration by young pigmented freshwater eels (Anguilla australis australis Richardson) in Tasmania[J]. Marine & Freshwater Research, 35(1):61-73.
Walters DM, Zuellig RE, Crockett HJ, et al. 2013. Barriers impede upstream spawning migration of flathead chub[J]. Transactions of the American Fisheries Society, 143(1):17-25.
CopyRight©2017 Editorial Office of Sichuan Journal of Zoology