Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2017 Vol.36 No.2

Molecular Identification of Euscorpiops validus and E. puerensis Based on Mitochondrial COI Gene Sequences
Author of the article:LI Rong#, ZHENG Yutian#, LI Chunqing, CHEN Yanyan, YANG Zhensheng, CHEN Shanyuan*, XIAO Heng*
Author's Workplace:School of Life Sciences, Yunnan University, Kunming 650091, China
Key Words:Euscorpiops validus; Euscorpiops puerensis; COI gene; molecular identification
Abstract:The traditional classification and taxonomy of scorpiones are mainly based on morphological and behavioral characteristics. However, due to the similar morphological characteristics among species, it is difficult to classify and identify distinct species among scorpions. To compensate for the insufficiency of traditional taxonomic methodology, this study used mitochondrial cytochrome oxidase subunit Ⅰ (COI) gene as molecular marker to conduct molecular identification of 2 morphologically similar scorpion species Euscorpiops validus and E. puerensis. The partial COI gene sequences (660 bp) from 24 samples of E. validus and E. puerensis were amplified by PCR followed by gene sequencing. The genetic distances, phylogenetic and haplotype network analyses were then carried out. The results showed that:4 haplotypes with similarity of 99.3%-99.8% were detected in 15 individuals of E. validus, and 4 haplotypes with similarity of 99.6%-99.8% were found in 9 individuals of E. puerensis; the interspecific similarity was 90.1%-90.6% and the number of stable differentiated nucleotide sites between the haplotypes of 2 species was 61. The intraspecific average genetic distances among E. validus haplotypes and among E. puerensis haplotypes were 0.004 0 and 0.002 3, respectively, while the interspecific average genetic distance between E. validus and E. puerensis was 0.103 9, being 34.6 times higher than that of intraspecific values. In addition, molecular phylogenetic tree clearly showed that the haplotype sequences of E. validus and E. puerensis clustered as 2 reciprocally monophyletic clades with high bootstrap values (100%). The haplotype network also showed that 8 haplotypes of E. validus and E. puerensis can be clearly divided into 2 clades, and the mutation steps between HAP2 haplotype of E. validus and HAP7 haplotype of E. puerensis reached 62. These results further confirmed that E. validus and E. puerensis were 2 distinct species, and indicated that mitochondrial COI gene was suitable for molecular species identification of Euscorpiops species.
2017,36(2): 139-144 收稿日期:2016-11-07
何静超, 胡岚岚, 郭晨辉, 等. 2016. 小五台山蟹蛛DNA条形码分子鉴定[J]. 河北大学学报(自然科学版), 36(3):286-292.
彭居俐, 王绪桢, 何舜平. 2008. DNA条形码技术的研究进展及其应用[J]. 水生生物学报, 32(6):916-919.
王康, 李玉婷, 郑燕, 等. 2016. 基于线粒体COI和COⅡ基因的沙果小食心虫与梨小食心虫的分子鉴定[J]. 西北农林科技大学学报(自然科学版), 44(2):156-164.
杨振升. 2012. 云南省蝎类资源分布、部分种类再记述和形态差异研究[D]. 昆明:云南大学.
朱振华, 叶辉, 张智英. 2005. 基于mtDNA Cytb的六种果实蝇的分子鉴定(双翅目:实蝇科)[J]. 昆虫学报, 48(3):386-390.
Aliabadian M, Kaboli M, Nijman V, et al. 2009. Molecular identification of birds:performance of distance-based DNA barcoding in three genes to delimit parapatric species[J]. PLoS ONE, 4(1):e4119. DOI:10.1371/journal.pone.0004119.
Avise JC, Walker D. 1999. Species realities and numbers in sexual vertebrates:perspectives from an asexually transmitted genome[J]. Proceedings of the National Academy of Sciences, 96(3):992-995.
Barrett RDH, Hebert PDN. 2005. Identifying spiders through DNA barcodes[J]. Canadian Journal of Zoology, 83(3):481-491.
Burland TG. 2000. DNASTAR's Lasergene sequence analysis software[J]. Methods in Molecular Biology, 132:71-91.
Clewley JP, Arnold C. 1997. MEGALIGN. The multiple alignment module of LASERGENE[J]. Methods in Molecular Biology, 70(70):119-129.
Di Z, He Y, Wu Y, et al. 2011. The scorpions of Yunnan (China):updated identification key, new record and redescriptions of Euscorpiops kubani and E. shidian (Arachnida, Scorpiones)[J]. Zookeys, 30(82):1-33.
Di ZY, Cao ZJ, Wu YL, et al. 2010a. A new species of the genus Euscorpiops Vachon, 1980 (Scorpiones:Euscorpiidae, Scorpiopinae) from Yunnan, China[J]. Zootaxa, 2361(1):39-48.
Di ZY, Wu YL, Cao ZJ, et al. 2010b. A catalogue of the genus Euscorpiops Vachon, 1980 (Scorpiones:Euscorpiidae, Scorpiopinae) from China, with description of a new species[J]. Zootaxa, 2361(2477):49-61.
Felsenstein J. 1985. Confidence limits on phylogenies:an approach using the bootstrap[J]. Evolution, 39(4):783-791.
Folmer O, Black M, Hoeh W, et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit Ⅰ from diverse metazoan invertebrates[J]. Molecular Marine Biology & Biotechnology, 3(5):294-299.
Hall TA. 1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series, 41(41):95-98.
Hebert PDN, Cywinska A, Ball SL, et al. 2003a. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society B Biological Sciences, 270(1512):313-321.
Hebert PDN, Ratnasingham S, de Waard JR. 2003b. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society B Biological Sciences, 270(suppl_1):S96-S99.
Hebert PDN, Stoeckle MY, Zemlak TS,et al. 2004. Identification of birds through DNA barcodes[J]. PLoS Biology, 2(10):e312. DOI:10.1371/journal.pbio.0020312.
Jeanmougin F, Thompson JD, Gouy M, et al. 1998. Multiple sequence alignment with Clustal X[J]. Trends in Biochemical Sciences, 23(10):403-405.
Kovařík F, KošuličO, Št'áhlavskyý F, et al. 2015. Two new species of Euscorpiops Vachon, 1980 from Thailand and Myanmar (Scorpiones:Euscorpiidae:Scorpiopinae)[J]. Annales Zoologici, 65(1):109-122.
Leigh JW, Bryant D. 2015. Popart:full-feature software for haplotype network construction[J]. Methods in Ecology & Evolution, 6(9):1110-1116.
Li QQ, Li DY, Ye H, et al. 2011. Using COI gene sequence to barcode two morphologically alike species:the cotton bollworm and the oriental tobacco budworm (Lepidoptera:Noctuidae)[J]. Molecular Biology Reports, 38(8):5107-5113.
Librado P, Rozas J. 2009. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 25(11):1451-1452.
Swindell SR, Plasterer TN. 1997. SEQMAN. Contig assembly[J]. Methods in Molecular Biology, 70(70):75-89.
Talal S, Tesler I, Sivan J, et al. 2015. Scorpion speciation in the Holy Land:multilocus phylogeography corroborates diagnostic differences in morphology and burrowing behavior among Scorpio subspecies and justifies recognition as phylogenetic, ecological and biological species[J]. Molecular Phylogenetics & Evolution, 91:226-237.
Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 30(12):2725-2729.
Wiens JJ, Penkrot TA. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus)[J]. Systematic Biology, 51(51):69-91.
Yamashita T, Rhoads DD. 2013. Species delimitation and morphological divergence in the scorpion Centruroides vittatus (Say, 1821):insights from phylogeography[J]. PLoS ONE, 8(7):e68282.DOI:10.1371/journal.pone.0068282.
CopyRight©2018 Editorial Office of Sichuan Journal of Zoology