Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2016 Vol.35 No.4

Effect of Exposure Time of Ailuropoda melanoleuca Feces on Microsatellites Analysis
Author of the article:WANG Chengdong1, YANG Bo1, HUANG Jie2,3, HUANG Yan1, CHENG Yanxi1, LI Rengui1, HUANG Shan1, LI Desheng1, ZHANG H
Author's Workplace:1. China Conservation and Research Center for the Giant Panda, Wolong, Sichuan Province 623006, China;
2. Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, China;
3. College of Life Sciences, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
Key Words:Ailuropoda melanoleuca; feces; exposure time; microsatellite
Abstract:Noninvasive sampling methods, such as acquiring host genomic DNA from fecal samples for molecular biology research, are increasingly used in endangered wild animals. However, it is difficult to obtain fresh feces in the field. By focusing on the effects of feces after different exposure times in the field on molecular studies for giant pandas (Ailuropoda melanoleuca), we found that shorter exposure time of feces would lower the level of DNA degradation, and increase the quality of the feces DNA. The degradation level of feces DNA was also related to seasonal variation and field environment. The valid time was no longer than 14 days in spring and autumn, less than 7 days in summer and no longer than 21 days in winter. Moreover, dry environment such as the entrance of the cave may be the best place for preserving feces samples in the field. The results of this study provided guidance for the feces collection of wild giant pandas in the field.
2016,35(4): 481-487 收稿日期:2016-02-16
DOI:10.11984/j.issn.1000-7083.20160033
分类号:Q958.1;Q953
基金项目:大熊猫国合资金项目(AD1413):大熊猫饲养、繁育及管理;重点区域野生大熊猫疫病本底调查与监测
作者简介:王承东,博士,高级工程师,主要从事大熊猫饲养管理、兽医及放归研究
*通讯作者:张和民,E-mail:wolong-zhm@126.com
参考文献:
陈璐, 岳曦. 2007. 非损伤性取样研究进展[J]. 四川动物, 26(1):224-226.
方盛国, 陈冠群, 冯文和, 等. 1996. 大熊猫DNA指纹在野生种群数量调查中的应用[J]. 兽类学报, 16(4):246-249.
郭建, 胡锦矗. 2001. 大熊猫粪团分布型的研究及其应用[J]. 兽类学报, 21(8):180-186.
康东伟, 赵志江, 郭文霞, 等. 2011. 大熊猫的生境选择特征[J]. 应用生态学报, 22(2):519-525.
魏辅文, 冯祚建. 1999. 相岭山系大熊猫和小熊猫对生境的选择[J]. 动物学报, 45(1):57-63.
魏辅文, 饶刚, 李明, 等. 2001. 分子粪便学及其应用——可靠性、局限性和展望[J]. 兽类学报, 21(2):143-152.
杨波, 杨承忠, 涂飞云, 等. 2013. 大熊猫野化放归中的遗传学分析[J]. 四川动物, 32(1):149-155.
张泽钧, 胡锦矗. 2000. 大熊猫生境选择研究[J]. 西华师范大学学报(自然科学版), 21(1):234-239.
赵秀娟, 张泽钧, 胡锦矗. 2012. 唐家河与蜂桶寨自然保护区大熊猫生境选择初步比较[J]. 西华师范大学学报(自然科学版), 33(3):234-239.
Baumgardt JA, Goldberg CS, Reese KP, et al. 2013. A method for estimating population sex ratio for sage-grouse using noninvasive genetic samples[J]. Molecular Ecology Resources, 13(3):393-402.
Caniglia R, Fabbri E, Galaverni M, et al. 2014. Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population[J]. Journal of Mammalogy, 95(1):41-59.
Chakraborty S, Boominathan D, Desai AA, et al. 2014. Using genetic analysis to estimate population size, sex ratio, and social organization in an Asian elephant population in conflict with humans in Alur, southern India[J]. Conservation Genetics, 15(4):897-907.
Chambers KE, Reichard UH, Möller A, et al. 2004. Cross-species amplification of human microsatellite markers using noninvasive samples from white-handed gibbons (Hylobates lar)[J]. American Journal of Primatology, 64(1):19-27.
Femando P, Vidya TN, Rajapakse C, et al. 2003. Reliable noninvasive genotyping:fantasy of reality?[J]. Journal of Heredity, 94(2):115-123.
Frantzen MA, Silk JB, Ferguson JW, et al. 1998. Empirical evaluation of preservation methods for faecal DNA[J]. Molecular Ecology, 7(10):1423-1428.
Huang J, Li YZ, Du LM, et al. 2015. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system[J]. BMC Genomics, 16(1):1-12.
Lu Z, Johnson WE, Menotti M, et al. 2001. Patterns of genetic diversity in remaining giant panda populations[J]. Conservation Biology, 15(6):1596-1607.
Murphy MA, Waits LP, Kendall KC, et al. 2002. An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples[J]. Conservation Genetics, 3(4):435-440.
Nsubuga AM, Robbins MM, Roeder AD, et al. 2004. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method[J]. Molecular Ecology, 13(7):2089-2094.
Oosterhout CV, Hutchinson WF, Wills DPM, et al. 2004. Micro-checker:software for identifying and correcting genotyping errors in microsatellite data[J]. Molecular Ecology Notes, 4(3):535-538.
Park S. 2001. Trypanotolerance in west African cattle and the population genetic effects of selection[D]. Dublin, Ireland:University of Dublin.
Roques S, Furtado M, Jácomo ATA, et al. 2014. Monitoring jaguar populations Panthera onca with non-invasive genetics:a pilot study in Brazilian ecosystems[J]. Oryx, 48(3):361-369.
Saarinen EV, Daniels JC, Maruniak JE. 2014. Local extinction event despite high levels of gene flow and genetic diversity in the federally-endangered Miami blue butterfly[J]. Conservation Genetics, 15(15):811-821.
Shen FJ, Zhang ZH, He W, et al. 2009. Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population[J]. Molecular Ecology, 18(6):1061-1070.
Sugimoto T, Aramilev VV, Kerley LL, et al. 2014. Noninvasive genetic analyses for estimating population size and genetic diversity of the remaining far eastern leopard (Panthera pardus orientalis) population[J]. Conservation Genetics, 15(3):521-532.
Taberlet P, Luikart G. 1999. Noninvasive genetic sampling and individual identification[J]. Biological Journal of the Linnean Society, 68(1-2):41-55.
Taberlet P, Waits LP, Luikart G. 1999. Noninvasive genetic sampling:look before you leap[J]. Trends in Ecology & Evolution, 14(8):323-327.
Yang JD, Hou R, Shen FJ, et al. 2011. Microsatellite variability reveals significant genetic differentiation of giant pandas (Ailuropoda melanoleuca) in the Minshan A habitat[J]. African Journal of Biotechnology, 10(60):12804-12811.
Zhan X, Li M, Zhang Z, et al. 2006. Molecular censusing doubles giant panda population estimate in a key nature reserve[J]. Current biology, 16(12):R451-R452.
Zhang BW, Li M, Zhang ZJ, et al. 2007. Genetic viability and population history of the giant panda, putting an end to the "evolutionary dead end"?[J]. Molecular Biology and Evolution, 24(8):1801-1810.
Zhu L, Hu Y, Qi D, et al. 2013. Genetic consequences of historical anthropogenic and ecological events on giant pandas[J]. Ecology, 94(10):2346-2357.
Zhu LF, Zhang SN, Gu XD, et al. 2011. Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China[J]. Molecular Ecology, 20(6):1122-1132.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology