Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2016 Vol.35 No.3

Variety of Cardiac Functions of Eospalax cansus after Hypoxia Acclimatization
Author of the article:ZHANG Jing, WANG Qian, QIAN Lingbo, YANG Jing, HE Jianping*
Author's Workplace:College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
Key Words:Eospalax cansus; cardiac functions; hypoxic acclimatization
Abstract:Eospalax cansus is a unique model of hypoxic tolerance and is a blind subterranean mole rat which lives on the loess plateau of China. This species develops multiple mechanisms to adapt the special environments. In this study, to detect the effects of intermittent hypoxic acclimatization on cardiac functions, eighteen E. cansus were randomly assigned to normoxia (N) group and chronic intermittent hypoxia (CIH) group. The results showed that, compared with the N group, CIH could significantly increase heart rate (P<0.05), and extreme significantly increase the average carotid artery pressure and the left ventricular systolic pressure (P<0.01), while no significant changes were observed in maximum rise rate of left ventricle pressure and maximum decline rate of left ventricle pressure, etc. These results indicated that E. cansus had adapted to hypoxic habitats (underground burrow) and its cardiac compensations had been significantly developed, and these can therefore alleviate the hypoxic effects of cardiac functions.
2016,(35): 421-425 收稿日期:2015-10-26
DOI:10.11984/j.issn.1000-7083.20150335
分类号:Q954.63;Q959.8
基金项目:国家自然科学基金项目(No.30670360)
作者简介:张静(1990-),女,硕士研究生,研究方向:神经生物学,E-mail:6045520302@qq.com
*通讯作者:何建平,E-mail:hejianping@snnu.edu.cn
参考文献:
韩苗苗, 何庆, 施遥, 等. 2014. 睡眠呼吸暂停模式间歇低氧对心脑血管的影响[J]. 天津医药, (9):946-949.
刘海春, 魏登邦. 2003. 高原鼢鼠肌肉脂溶性物质抗缺氧机制的探讨[J]. 黑龙江畜牧兽医, (4):7-8.
龙超良, 周智, 尹昭云, 等. 1999. 急、慢性缺氧对大鼠心功能的影响[J]. 航天医学与医学工程, 12(4):35-37.
鲁庆彬, 张阳, 周材权. 2013. 甘肃鼢鼠不同地理种群的形态变异分析[J]. 兽类学报, 33(2):193-199.
秦桂香, 魏登邦. 2003. 高原鼢鼠肌肉脂溶性物质对大鼠一氧化氮合成酶和血红素氧合酶活性的影响[J]. 黑龙江畜牧兽医, (5):51-52.
阮宗海, 陈华伟, 陈秋红, 等. 2000. 不同海拔高原鼠兔、大白鼠血红蛋白电泳及血液学对比观察[J]. 中国应用生理学杂志, 16(1):47, 91, 95.
孙希武, 叶益新, 邓希贤. 1994. 低氧适应对缺氧性心功能损伤的保护作用及其机制探讨[J]. 中国应用生理学杂志, 10(3):205-208.
唐燕红, 王剑, 李金钢, 等. 2013. 低氧应激下甘肃鼢鼠与SD大鼠心脏抗氧化酶和ATP酶活性的比较[J]. 兽类学报, 33(2):178-185.
王延正, 徐文贤. 1992. 陕西啮齿动物志[M]. 西安:陕西师范大学出版社:113-115.
谢芬, 李涛, 何建平. 2012. 低氧对甘肃鼢鼠体内ACTH及血液生理指标的影响[J]. 动物学杂志, 47(5):119-123.
严婷婷, 樊魏伟, 何建平. 2012. 低氧耐受对甘肃鼢鼠心肌结构的影响[J]. 陕西师范大学学报(自然科学版), 40(2):62-66.
杨静, 李金钢, 何建平, 等. 2006. 甘肃鼢鼠血象及其与低氧适应的关系[J]. 动物学杂志, 41(2):112-115.
于军, 朱妙章, 裴建明, 等. 2003. 低氧对心脏成纤维细胞增殖细胞核抗原表达与表型的影响[J]. 中国病理生理杂志, 19(10):1311-1315.
袁芳, 郭赞, 徐瑛, 等. 2008. 间歇性低压低氧与连续性低压低氧对大鼠血液动力学作用的比较(英文)[J]. 生理学报, 60(6):687-694.
张晋源, 陈彦, 肖玲, 等. 2014. 内源性大麻素系统在慢性间歇低氧大鼠心肌肥厚病理过程中的作用[J]. 中国循环杂志, 7:545-549.
周兆年. 2003. 低氧与健康研究[J]. 中国基础科学, (5):22-27.
Béguin PC, Joyeux-Faure M, Godin-Ribuot D, et al. 2005. Acute intermittent hypoxia improves rat myocardium tolerance to ischemia[J]. Journal of Applied Physiology, 99(3):1064-1069.
Boer PH, Ruzicka M, Lear W, et al. 1994. Stretch-mediated activation of cardiac renin gene[J]. American Journal of Physiology-Heart and Circulatory Physiology, 267(4):H1630-H1636.
DiPasquale DM, Strangman GE, Harris NS, et al. 2015. Acute mountain sickness, hypoxia, hypobaria and exercise duration each affect heart rate[J]. International Journal of Sports Medicine, 36(8):609-614.
Faulhaber M, Gatterer H, Haider T, et al. 2015. Heart rate and blood pressure responses during hypoxic cycles of a 3-week intermittent hypoxia breathing program in patients at risk for or with mild COPD[J]. International Journal of Chronic Obstructive Pulmonary Disease, 10:339-345.
Holden JE, Stone CK, Clark CM, et al. 1995. Enhanced cardiac metabolism of plasma glucose in high-altitude natives:adaptation against chronic hypoxia[J]. Journal of Applied Physiology, 79(1):222-228.
Kentera D, Sušić D. 1980. Dynamics of regression of right ventricular hypertrophy in rats with hypoxic pulmonary hypertension[J]. Respiration, 39(5):272-275.
Kimura W, Xiao F, Canseco DC, et al. 2015. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart[J]. Nature, 523(7559):226-230.
Lavie L. 2015. Oxidative stress in obstructive sleep apnea and intermittent hypoxia-revisited-the bad ugly and good:implications to the heart and brain[J]. Sleep Medicine Reviews, 20:27-45.
Mendesa RH, Mostardab C, Candidoc GO, et al. 2014. Hyperhomocysteinemia provokes dysfunction of cardiovascular autonomic system and liver oxidative stress in rats[J]. Autonomic Neuroscience, 180:43-47.
Monnereta D, Tamisiera R, Ducrosb V, et al. 2012. The impact of obstructive sleep apnea on homocysteine and carotid remodeling in metabolic syndrome[J]. Respiratory Physiology & Neurobiology, 180(2):298-304.
Netuka I, Szarszoi O, Maly J, et al. 2006. Effect of perinatal hypoxia on cardiac tolerance to acute ischaemia in adult male and female rats[J]. Clinical and Experimental Pharmacology and Physiology, 33(8):714-719.
Nevo E. 2009. Visual system:adaptive regression and progression in subterranean mammals[M]//Squire LR. Encyclopedia of neuroscience. Oxford:Academic Press:323-330.
Nevo E. 2013. Stress adaptation and speciation in the evolution of the blind mole rat, Spalax, in Israel[J]. Molecular Phylogenetics and Evolution, 66(2):515-525.
Norrisa RW, Zhoub K, Zhoub C, et al. 2004. The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia)[J]. Molecular Phylogenetics and Evolution, 31(3):972-978.
Ostadal B, Kolar F. 2007. Cardiac adaptation to chronic high-altitude hypoxia:beneficial and adverse effects[J]. Respiratory Physiology & Neurobiology, 158(3):224-236.
Prabhakar NR, Kumar GK, Peng YJ. 2012. Sympatho-adrenal activation by chronic intermittent hypoxia[J]. Journal of Applied Physiology, 113(8):1304-1310.
Puente BN, Kimura W, Muralidhar SA, et al. 2014. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response[J]. Cell, 157(3):565-579.
Ramond A, Godin-Ribuot D, Ribuot C, et al. 2011 Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia[J]. Fundamental & Clinical Pharmacology, 27(3):252-261.
Rossi VA, Stradling JR, Kohler M. 2013. Effects of obstructive sleep apnoea on heart rhythm[J]. European Respiratory Journal, 41(6):1439-1451.
Shams I, Avivi A, Nevo E. 2005. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses[J]. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 142(3):376-382.
Smorkatcheva AV, Lukhtanov VA. 2014. Evolutionary association between subterranean lifestyle and female sociality in rodents[J]. Mammalian Biology-Zeitschrift für Säugetierkunde, 79(2):101-109.
Taralova Z, Terziyskia K, Dimova P, et al. 2015. Assessment of the acute impact of normobaric hypoxia as a part of an intermittent hypoxic training on heart rate variability[J]. Cor et Vasa, 57(4):e251-e256.
Tomasco IH, Lessa EP. 2011. The evolution of mitochondrial genomes in subterranean caviomorph rodents:adaptation against a background of purifying selection[J]. Molecular Phylogenetics and Evolution, 61(1):64-70.
Zhou L, Zhao Y, Nijland R, et al. 1997. Ins(l, 4, 5)P3 receptors in cerebral arteries:changes with development and high-altitude hypoxia[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 272(6):1954-1959.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology