Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2016 Vol.35 No.2

Chemical Reasons for Giant Panda Peeling the Bamboo Culm Skin
Author of the article:ZHAO Zhichen1, LIN Da1, SUN Xue1, ZHANG Guiquan2, JIA Jingbo1
Author's Workplace:1. Northeast Forestry University, Harbin 150040, China;
2. China Conservation and Research Center for the Giant Panda, Ya'an, Sichuan Province 625000, China
Key Words:giant panda; bamboo; bamboo culm skin; selective feeding; fiber-like substance
Abstract:The survial of giant pandas (Ailuropoda melanoleuca) is highly depended on the bamboo, however, they are strongly selective on the bamboo when feeding. Especially, when eating the bamboo culm, they usually peel the culm skin. Although this behavior may simply be regarded as giant pandas' dislike the hard skin, it would be necessary to explore the underlying chemical reasons. By observing eight captive giant pandas in Ya'an Bifeng Gorge Base and Dujiangan Disease Control Center, China Conservation and Research Center for the Giant Panda, Sichuan, China, from April to May of 2015, 8 of 10 species of bamboo were selected by the pandas, and the bamboo culm skin was robustly peeled. The result of chemical analysis by using filter bag technology of Van Soest with ANKOM-A2000i Automated Analyzer showed that, the contents of fiber-like substance of majority of bamboo were significantly different between culm skin and the rest part of culm. In the culm skin, the content of hemicellulose was 15%~35% lower than the rest part (9 species: P<0.01; 1 species: P>0.05), but cellulose content was 5%~30% higher than the rest part (3 species: P<0.01; 5 species: P<0.05; 2 species: P>0.05), and lignin content was 5%~48% higher than the rest part (2 species: P<0.01; 6 species: P<0.05; 2 species: P>0.05). Our results showed that, the fiber-like substance, especially the cellulose and lignin, may harden the culm skin, and this might be one of the possible chemical reasons for giant panda abandoning the bamboo culm skin.
2016,(35): 161-166 收稿日期:2015-11-07
DOI:10.11984/j.issn.1000-7083.20150351
分类号:Q959.8
基金项目:国家林业局大熊猫国际合作项目(WY1103)
作者简介:赵志琛(1990-), 男, 硕士研究生, E-mail:maorongrong9@foxmail.com
*通讯作者:贾竞波, E-mail:jiajingbo2011@163.com
参考文献:
毕温磊, 侯蓉, 费立松, 等. 2014. 迁入都江堰野放中心的大熊猫野化放归个体皮质醇水平变化初步研究[J]. 四川动物, 33(1): 8-12.
陈昌笃. 2000. 都江堰地区-横断山北段生物多样性交汇,分化和存留的枢纽地段[J]. 生态学报, 20(1): 28-34.
陈晓亚, 薛红卫. 2012. 植物生理与分子生物学[M]. 北京: 高等教育出版社: 187-198.
樊程, 李双江, 李成磊, 等. 2012. 大熊猫肠道纤维素分解菌的分离鉴定及产酶性质[J]. 微生物学报, 52(9): 1113-1121.
费立松, 杨光友, 张志和, 等. 2005. 大熊猫胃内纤毛虫检测初报[J]. 动物学报, 51(3): 526-529.
傅金和, 张文燕, 袁金玲. 2011. 中国大熊猫与食竹[M]. 杭州: 浙江科学技术出版社.
何东阳. 2010. 大熊猫取食竹选择、消化率及营养和能量对策的研究[D]. 北京: 北京林业大学: 3-6.
李腾飞, 李俊清. 2009. 四川王朗自然保护区缺苞箭竹(Fargesia denudate Yi.)总酚含量及变化规律[J]. 生态学报, 29(8): 4512-4516.
刘颖颖. 2009. 秦岭圈养大熊猫对投食竹种的选择研究[D]. 北京: 中国林业科学研究院: 21-28.
罗永久, 何廷美, 钟志军, 等. 2013. 圈养大熊猫食性转换前期肠道细菌多样性[J]. 中国兽医学报, 33(12): 1896-1901.
孙雪, 林达, 张庆, 等. 2015. 大熊猫取食竹种纤维类物质分析[J]. 野生动物学报, 36(2): 151-156.
谭仁祥, 孟军才, 陈道峰, 等. 2002. 植物成分分析[M]. 北京: 科学出版社: 531-544.
汤纯香, 许尔兴, 汤洋, 等. 2007. 大熊猫迁居碧峰峡新生境的适应能力研究[J]. 应用与环境生物学报, 13(5): 686-690.
王海娟, 潘渠. 2014. 大熊猫肠道正常菌群降解纤维素的机制[J]. 中国微生态学杂志, 26(2): 225-228.
王小红. 2007. 水竹和慈竹开花研究[D]. 雅安: 四川农业大学.
杨凤. 2010. 动物营养学 第二版[M]. 北京: 中国农业出版社.
张亚新. 2007. 大熊猫降解纤维素的进展研究[J]. 科学大众(科学教育研究), 6: 112.
张颖溢, 龙玉, 王昊, 等. 2002. 秦岭野生大熊猫(Ailuropoda melanoleuca)的觅食行为[J]. 北京大学学报(自然科学版), 38(4): 478-486.
赵晓虹, 刘广平, 马泽芳. 2001. 竹子中单宁含量的测定及其对大熊猫采食量的影响[J]. 东北林业大学学报, 29(2): 67-71.
Buchanan BB, Jones RL. 2000. Biochemistry & molecular biology of plants[M]. Rockville MD: American Society of Plant Physiologists.
Dierenfeld ES, Hintz HF, Robertson JB. 1982. Utilization of bamboo by the giant panda[J]. The Journal of Nutrition, 112: 636-641.
Goering HK, Van Soest PJ. 1970. Forage fiber analyses (apparatus, reagents, prcedures, and some applications)[J]. USDA Agriculture Handbook, 379: 1-20.
Helander M, Jia R, Huitu O, et al. 2013. Endophytic fungi and silica content of different bamboo species in giant panda diet[J]. Symbiosis, 61(1): 13-22.
Hunter IR, Dierenfeld ES, Jinhe F. 2003. The possible nutritional consequences for giant panda of establishing reserve corridors with various bamboo species[J]. Journal of Bamboo and Rattan, 2(2): 167-178.
Jiang Z. 2007. Bamboo and rattan in the world[M]. Beijing: China Forestry Publishing House.
Keski-Saari S, Ossipov V, Julkunen-Tiitto R, et al. 2008, Phenolics from the culms of five bamboo species in the Tangjiahe and Wolong Giant Panda Reserves, Sichuan, China[J]. Biochemical Systematics and Ecology, 36(10): 758-765.
Schaller GB. 1985. Giant pandas of Wolong[M]. Chicago: University of Chicago Press.
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 74: 3583-3597.
Van Soest PJ. 1994. Nutritional ecology of the ruminant[M]. New York: Cornell University Press.
Wei F, Feng Z, Wang Z, et al. 1999. Feeding strategy and resource partitioning between giant and red pandas[J]. Mammalia, 63(4): 417-430.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology