Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Fax:+86-28-85410485 &
Your Position :Home->Past Journals Catalog->2015 Vol.34 No.3

Expression of Calcium-binding Proteins on the Auditory Nuclei in Turtles
Author of the article:XU Jing1,2, SONG Jing1,3, TANG Yezhong1*
Author's Workplace:1. Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu 610041, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Shanxi Agricultural University, Taigu, Shanxi Province 030801, China
Key Words:sound communication; auditory nuclei; Jeffress model; nucleus laminaris
Abstract:During the long evolution process the auditory nerve system of animals has been diversified into different structures according to natural selection. The immunohistochemistry of calcium-binding proteins was selected in this study on the auditory nuclei between demersal and adlittoral turtles (Pelodiscus sinensis and Trachemys scripta elegans). The results showed cross sections of auditory nuclei of the two species. And the structural difference of nucleus laminaris was proved by different media of sound.
2015,34(3): 321-329 收稿日期:2014-4-1
Belekhova M, Chudinova T, Kenigfest N, et al. 2008. Distribution of metabolic activity (cytochrome oxidase) and immunoreactivity to calcium-binding proteins in the turtle brainstem auditory nuclei[J]. Journal of Evolutionary Biochemistry and Physiology, 44: 354-364.
Belekhova M, Chudinova T, Repéran J, et al. 2010. Core-and-belt organisation of the mesencephalic and forebrain auditory centres in turtles: Expression of calcium-binding proteins and metabolic activity[J]. Brain Research, 1345: 84-102.
Belekhova M, Kenigfest N, Minakova M, et al. 2003. Calcium-binding proteins in the turtle thalamus. analysis in the light of hypothesis of the "core-matrix" thalamic organization in relation to the problem of homology of thalamic nuclei among amniotes[J]. Journal of Evolutionary Biochemistry and Physiology, 39(6): 624-647.
Belekhova M, Kenigfest N, Karamian O, et al. 2004. Distribution of calcium-binding proteins in the central and peripheral regions of the turtle mesencephalic center torus semicircularis[J]. Doklady Biological Sciences, 399: 451-454.
Boord R, Rasmussen G. 1963. Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon[J]. Journal of Comparative Neurology, 120(3): 463-475.
Boord R. 1968. Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon[J]. Journal of Comparative Neurology, 133(4): 523-541.
Braun K. 1990. Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions[J]. Progress in Histochemistry and Cytochemistry, 21: 1-64.
Braun K, Scheich H, Hezmann C, et al. 1991. Parvalbumin and calbindin-D28k immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch[J]. Neuroscience, 40(3): 853-869.
Braun K, Piepenstock A. 1993. Parvalbumin-immunoreactive neurons in the subcortical auditory pathway of the mongolian gerbil (Meriones unguiculatus)[J]. Acta Histochem Cytochem, 26(6): 543-554.
Braun K, Scheich H, Schachner M, et al. 1985. Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch[J]. Cell Tissue Research, 240(1): 101-115.
Carr C, Konishi M. 1990. A circuit for detection of interaural time differences in the brain stem of the barn owl[J]. Journal of Neuroscience, 10(10): 3227-3246.
Carr C, Boudreau R. 1991. Central projections of auditory nerve fibers in the barn owl[J]. Journal of Comparative Neurology, 314(2): 306-318.
Carr C, Code R. 2000. The central auditory system in reptiles and birds[M]// Dooling R, Fay R, Popper A. Comparative hearing: birds and reptiles. New York: Springe: 1-400.
Celio M. 1990. Calbindin D-28k and parvalbumin in the rat nervous system[J]. Neuroscience, 35: 375-475.
Condon C, White K, Feng A, et al. 1994. Processing of amplitude-modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus[J]. Journal of Neurophysiology, 71(2): 768-784.
Conlee J, Parks T. 1986. Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken[J]. Brain Research, 367(1): 96-113.
Dávila J, Guirado S, Puelles L. 2000. Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus[J]. Journal of Comparative Neurology, 427(1): 67-92.
Feddersen W, Sandel T, Teas D, et al. 1957. Localization of high frequency tones[J]. Journal of the Acoustical Society of America, 5:82-108.
Fitzpatrick D, Batra R, Kuwada S. 1997. Neurons sensitive to interaural temporal disparities in the medial part of the ventral nucleus of the lateral lemniscus[J]. The Journal of Neurophysiology, 78: 511-515.
Foster R, Hall W. 1978. The organization of central auditory pathways in a reptile, Iguana iguana[J]. Journal of Comparative Neurology, 178: 783-831.
Gelfand S. 2004. Hearing: an introduction to psychological and physiological acoustics (4th Edition)[M]. New York: Marcel Dekker.
Glatt A. 1975. Vergleichend morphologische untersuchungen am akustischen system einiger ausgewahlter reptilien. B. Sauria, Testudines[J]. Revue Suisse de Zoologie, 82: 469-494.
Grau-Serrat V, Carr C, Simon J. 2003. Modeling coincidence detection in nucleus laminaris[J]. Biological Cybernetics, 89(5): 388-395.
Huang Y, Zhang J, Xi C, et al. 2011. Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog Xenopus laevis[J]. Brain Res, 1373: 67-78.
Jeffress L. 1948. A place theory of sound localization[J]. Journal of Comparative Physiological Psychology, 41(1): 35-39.
Jones E. 1998. Viewpoint: the core and matrix of thalamic organization[J]. Neuroscience, 85(2): 331-345.
Kappers J. 1967. The sensory innervation of the pineal organ in the lizard, Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution[J]. Cell and Tissue Research, 81(4): 581-618.
Knudsen E. 1983. Subdivisions of the inferior colliculus in the barn owl (Tyto alba)[J]. Journal of Comparative Neurology, 218(2): 174-186.
Knudsen E, Konishi M. 1979. Mechanisms of sound localization in the barn owl (Tyto alba)[J]. Journal of Comparative Physiology, 133(1): 13-21.
Kubke M, Carr C. 2006. Morphological variation in the nucleus laminaris of birds[J]. International Journal of Comparative Psychology, 19: 83-97.
Kubke M, Gauger B, Basu L, et al. 1999. Development of calretinin immunoreactivity in the brainstem auditory nuclei of the barn owl (Tyto alba)[J]. Journal of Comparative Neurology, 415(2): 189-203.
Lachica E, Rübsamen R, Rubel E. 1994. GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus[J]. Journal of Comparative Neurology, 348: 403-418.
Miller M. 1975. The cochlear nuclei of some turtles[J]. Journal of Comparative Neurology, 159(3): 375-406.
Miller M, Kasahara M. 1979. The cochlear nuclei of some turtles[J]. Journal of Comparative Neurology, 185(2): 221-235.
Moiseff A, Konishi M. 1981. Neuronal and behavioral sensitivity to binaural time differences in the owl[J]. Journal of Neuroscience, 1(1): 40-48.
Parks T, Rubel E. 1978. Organization and development of the brainstem auditory nuclei of the chicken: primary afferent projections[J]. Journal of Comparative Neurology, 180: 435-448.
Parvizi J, Damasio A. 2003. Differential distribution of calbindin D28K and parvalbumin among functionally distinctive sets of structures in the macaque brainstem[J]. Journal of Comparative Neurology, 462(2): 153-167.
Payne R. 1962. How the barn owl locates prey by hearing. the living bird. first annual of the Cornell Laboratory of Ornithology[M]. Ithaca: New York: Laboratory of Ornithology, Cornell University: 151-159.
Rogers J. 1989. Two calcium-binding proteins mark many chick sensory neurons[J]. Neuroscience, 31: 697-709.
Schnitzler HU, Flieger E. 1983. Detection of oscillating target movements by echolocation in the greater horseshoe bat[J]. Journal of Comparative Physiology, 153: 385-391.
Takahashi T, Carr C, Brecha N, et al. 1987. Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl[J]. Journal of Neuroscience, 7(6): 1843-1856.
Takahashi T, Konishi M. 1988. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl[J]. Journal of Comparative Neurology, 274(2): 212-238.
Vater M, Braun K. 1994. Parvalbumin, calbindin D-28k, and calretinin immunoreactivity in the ascending auditory pathway of horseshoe bats[J]. Journal of Comparative Neurology, 341(4): 534-558.
Westerberg B, Schwarz D. 1995. Connections of the superior olive in the chicken[J]. Journal of Otolaryngology, 24(1): 20-30.
Whitehead M, Morest D. 1981. Dual populations of efferent and afferent cochlear axons in the chicken[J]. Neuroscience, 6(11): 2351-2365.
Yan K, Tang Y, Carr C. 2010. Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko[J]. Journal of Comparative Neurology, 518: 3409-3426.
Young S, Rubel E. 1983. Frequency-specific projections of individual neurons in chick brainstem auditory nuclei[J]. Journal of Neuroscience, 3(7): 1373-1378.
Zettel M, Carr C, O'Neill W. 1991. Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnellii[J]. Journal of Comparative Neurology, 313(1): 1-16.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology