Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2015 Vol.34 No.4

The Category, Location and Ultrastructure of Scales of Adult Loxostege sticticalis L.(Lepidoptera: Pyralidae)
Author of the article:LIU Keke, XIAO Yonghong, CHENG Yunxia, LUO Lizhi
Author's Workplace:1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing 100193, China;
2. College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi Province 343009, China
Key Words:Loxostege sticticalis L.; scale; ultrastructure
Abstract:There were many kinds of scales located on adult Loxostege sticticalis, and these scales were vital for the long-distance migration and adaption to variable complex habitats. These scales could be classified into two categories by the structural characters: lamella and piliform. The lamellar scales were ovate or blade-like in cross section, such as serrated scales, spatulate scales, abdominal scale tufts and hook-shaped scales forming the thorax lock. Piliform scales were round in cross section, such as hairs along inner margin of hindwing and ventroposterior brush. The analysis of ultrastructure showed that the scale was consisted of several basic structures including longitudinal ridges, cross ribs, windows, lumen and mastoid process. All of these scales fitted into a socket, and involved some specific structures such as the particular hook bending tip of the hook-shaped scales, the mastoid process of abdominal scale tufts, and windows in hairs along inner margin of hindwing and ventroposterior brush. These scales developing from the epidermal cells born the various biological functions on adult body of L. sticticalis. In conclusion, the examination of scale ultrastructure may provide theoretical basis for the morphological, behavioral and evolutionary research.
2015,34(4): 524-533 收稿日期:2014-11-5
DOI:10.11984/j.issn.1000-7083.2015.04.008
分类号:Q969.42
基金项目:公益性行业(农业)科研专项(201303057); 国家自然科学基金项目(31301656); 国家国际科技合作专项(2014DFR31250); 中国博士后科学基金第49批面上项目(20110490485)
作者简介:刘科科,男,硕士,初级实验师,研究方向:农业昆虫与害虫防治和蜘蛛生态学,E-mail:liukeke_1986@126.com
*通讯作者:罗礼智,E-mail:lzluo@ippcaas.cn
参考文献:
陈阳, 姜玉英, 刘家骧, 等. 2012. 标记回收法确认我国北方地区草地螟的迁飞[J]. 昆虫学报, 55(2): 176-182.
程云霞. 2012. 草地螟Loxostege sticticalis迁飞与生殖行为的调控及互作关系[D]. 北京: 中国农业科学院.
关会英. 2007. 典型蝴蝶鳞片结构色形成机理及其微观结构研究[D]. 长春: 吉林大学.
刘科科, 肖永红, 程云霞, 等. 2013. 草地螟雄蛾生殖系统的形态和结构[J]. 应用昆虫学报, 50(6): 1692-1699.
罗礼智, 姜玉英, 黄绍哲, 等. 2009. 2009年1代草地螟将为我国发生最重的世代[J]. 植物保护, 35(3): 96-101.
罗礼智. 2004. 我国2004年一代草地螟将暴发成灾[J]. 植物保护, 30(3): 86-88.
邵起生. 1995. 动物的体色[J]. 生物学通报, 30(10): 11-13.
张希林. 1999. 草地螟的生物学特性及防治研究[J]. 甘肃农业科技, 1: 33-35.
Bell TW, Meinwald J. 1986. Pheromones of two arctiid moths (Creatonotos transiens and C. gangis)[J]. Journal of Chemical Ecology, 12(2): 385-409.
Berwaerts K, Dyck H, Vints E, et al. 2001. Effect of manipulated wing characteristics and basking posture on thermal properties of the butterfly Pararge aegeria (L.)[J]. Journal of Zoology, 255(2): 261-267.
Birch MC, Poppy GM. 1990. Scent and eversible scent structures of male moths[J]. Annual Review of Entomology, 35(1): 25-58.
Biró LP, Kertész K, Vértesy Z, et al. 2008. Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors[J]. Proc of SPIF, 7057: 705706-1-705706-8.
Downey JC, Allyn AC. 1975. Wing-scale morphology and nomenclature [M]. Allyn Museum of Entomology: 30-31.
Frolov AN, Malysh YM, Tokarev YS. 2008. Biological features and population density forecasts of the beet webworm Pyrausta sticticalis L. (Lepidoptera, Pyraustidae) in the period of low population density of the pest in Krasnodar Territory[J]. Entomological Review, 88(6): 666-675.
Knor IB, Bashev AN, Alekseev AA, et al. 1993. Effect of population density on the dynamics of the beet webworm Loxostege sticticalis L. (Lepidoptera:Pyralidae)[J]. Entomological Review, 72: 117-124.
Kristensen NP, Simonsen TJ. 2003. 'Hairs' and scales[M]// Miels Pkristensen. Handbook of Zoology vol. LV, part 36. Lepidoptera, Moths and Butterflies 2: Morphology, Physiology, and Development Walter de Gruyter.
Kumazawa K, Negita K, Hasegawa T, et al. 1996. Fluorescence from cover and basal scales of Morpho sulkowskyi and Papilio xuthus butterflies[J]. Journal of Experimental Zoology, 275(1): 15-19.
Nijhout HF. 1985. The developmental physiology of color patterns in Lepidoptera[J]. Advances in Insect Physiology, 18: 181-247.
Pepper JH. 1938. The effect of certain climate factors on the distribution of the beet webworm (Loxostege sticticalis L.) in North American[J]. Ecology, 19(4): 565-571.
Schmitz H. 1994. Thermal characterization of butterfly wings-1. absorption in relation to different color, surface structure and basking type[J]. Journal of Thermal Biology, 19(6): 403-412.
Scoble MJ. 1992. The Lepidoptera. form, function and diversity[M]. UK: Oxford University Press: 62-169.
Simonsen TJ, Roe AD. 2009. Phylogenetic utility and comparative morphology of the composite scale brushes in male phycitine moths (Lepidoptera, Pyralidae)[J]. Zoologischer Anzeiger-A Journal of Comparative Zoology, 248(2): 119-136.
Tanaka H, Matsumoto K, Shimoyama I. 2008. Design and performance of micromolded plastic butterfly wings on butterfly ornithopter[C]// Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE: 3095-3100.
Vukusic P, Sambles JR, Lawrence CR, et al. 1999. Quantified interference and diffraction in single Morpho butterfly scales[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1427): 1403-1411.
Wagner T, Neinhuis C, Barthlott W. 1996. Wettability and contaminability of insect wings as a function of their surface sculptures[J]. Acta Zoologica, 77(3): 213-225.
Watanabe K, Hoshino T, Kanda K, et al. 2005. Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition[J]. Journal of Vacuum Science & Technology B, 23(2): 570-574.
Yoshida A, Aoki K. 1989. Scale arrangement pattern in a lepidopteran wing. 1. Periodic cellular pattern in the pupal wing of Pieris rapae[J]. Development, Growth & Differentiation, 31(6): 601-609.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology