刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2021年第40卷第5期

卧龙国家级自然保护区绿尾虹雉种群分布和生境质量评价
Population Survey and Habitat Quality Assessment of Lophophorus lhuysii in the Wolong National Nature Reserve
钟雪1#, 杨楠2#, 张龙1, 程跃红3*, 冯茜3, 胡强3, 金义国3
点击:115次 下载:30次
DOI:10.11984/j.issn.1000-7083.20210176
作者单位:1. 西华师范大学西南野生动植物资源保护教育部重点实验室, 四川南充 637009;
2. 西南民族大学青藏高原研究院, 成都 610041;
3. 四川卧龙国家级自然保护区管理局, 四川汶川 623006
中文关键字:卧龙国家级自然保护区;绿尾虹雉;生境质量;红外相机;相对多度
英文关键字:Wolong National Nature Reserve; Lophophorus lhuysii; habitat quality; infrared camera; relative abundance
中文摘要:绿尾虹雉Lophophorus lhuysii是中国特有的高山雉类,国家一级重点保护野生动物,具有极高的保护价值。卧龙国家级自然保护区是绿尾虹雉的重要分布区,但长期以来都缺乏针对性分布调查和生境研究。2019—2021年使用红外相机技术对保护区的绿尾虹雉种群进行了广泛调查,采用物种分布模型评价了其生境质量。结果显示:1)109个红外相机位点中共有66个拍摄到绿尾虹雉,其中银厂沟和足木沟等区域的种群相对多度较高;2)基于47个物种出现点和28个环境变量所构建的MaxEnt生境评价模型显示,保护区内绿尾虹雉的适宜生境总面积765.07 km2,占保护区总面积的38.25%,其中,高质量和低质量生境面积分别为202.22 km2和562.85 km2,并且主要位于核心区;3)气候、植被、地形和人为干扰共同影响绿尾虹雉的生境质量,降水季节性适中、最干季均温和年均温较低、远离河流和公路的灌丛和草甸是绿尾虹雉的最适宜生境。总体而言,保护区的绿尾虹雉生境面积大、质量高且连通性较好,为绿尾虹雉种群资源提供了良好的生存环境。
英文摘要:Chinese monal (Lophophorus lhuysii) is an alpine Galliformes species endemic to China, and also a first-class nationally key protected species in China with high global conservation concern. Wolong National Nature Reserve is one of the most important distribution regions for L. lhuysii, however, less study has been conducted to survey the population and habitat of L. lhuysii in the reserve. During 2019 to 2021, infrared cameras were used to survey L. lhuysii population in an extensive region across the reserve, and the habitat quality was assessed using a species distribution model. The results showed that 1) of the 109 camera sites set in alpine and subalpine regions, L. lhuysii were photographed in 66 sites. This indicated that L. lhuysii was widely distributed in high-elevation areas, especially in Yinchanggou and Zumugou; 2) habitat model built by MaxEnt using 47 occurrence points and 28 environmental variables predicted a total area of 765.07 km2, accounting for 38.25% of the reserve. Both the high-quality and low-quality habitats were mainly distributed in the core zone with the area of 202.22 km2 and 562.85 km2, respectively; 3) the quality of habitat was influenced by climate, vegetation, topographic and human disturbance factors collectively. The highest quality habitat was located in shrub and meadow regions with moderate precipitation seasonally, lower mean temperature in the driest season, lower annual mean temperature, and longer distance from rivers and roads. Overall, the habitat of L. lhuysii in the Wolong National Nature Reserve is large-area with high-quality and well connected, and thus provides good survival environment for L. lhuysii.
2021,40(5): 509-516 收稿日期:2021-05-21
分类号:Q958.1;Q959.7
基金项目:西华师范大学基本科研业务费项目(19D050);2021年国家重点生态功能区转移支付禁止开发区补助项目
作者简介:钟雪(1989-),女,硕士,主要从事生态保护等方面研究,E-mail:zhongxue_cwnu@163.com;杨楠(1982-),男,博士,助理研究员,主要从事野生动物保护与管理研究工作,E-mail:yangnan0204@126.com
*通信作者:程跃红,E-mail:CYH8155@163.com
参考文献:
陈立军, 肖文宏, 肖治术. 2019. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 27(3):243-248.
何芬奇, 卢汰春, 芦春雷, 等. 1986. 绿尾虹雉的繁殖生态研究[J]. 生态学报, 6(2):100-106.
孔维尧, 李欣海, 邹红菲. 2019. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 30(6):2116-2128.
李国庆, 刘长成, 刘玉国, 等. 2013. 物种分布模型理论研究进展[J]. 生态学报, 33(16):4827-4835.
李宏群, 廉振民, 陈存根, 等. 2007. 陕西黄龙山林区褐马鸡春季觅食地选择[J]. 动物学杂志, 42(3):61-67.
刘梦瑶, 高依敏, 陈建宁, 等. 2013. 绿尾虹雉保护生物学研究现状[J]. 江西林业科技, 2:36-39.
唐书培, 穆丽光, 王晓玲, 等. 2019. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价[J]. 北京林业大学学报, 41(1):106-112.
徐基良, 张晓辉, 张正旺, 等. 2002. 白冠长尾雉育雏期的栖息地选择[J]. 动物学研究, 23(6):471-476.
余翔, 陈俊橙, 王彬, 等. 2017. 四川小寨子沟国家级自然保护区绿尾虹雉种群密度调查与栖息地评价[J]. 四川动物, 36(4):361-367.
郑光美. 2015. 中国雉类[M]. 北京:高等教育出版社.
钟雪, 杨炜蓉, 朱云东, 等. 2020. 基于MaxEnt模型的四川片口自然保护区绿尾虹雉栖息地评价[J]. 三峡生态环境监测, 5(4):49-55.
朱耿平, 刘国卿, 卜文俊, 等. 2013. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 21(1):90-98.
BirdLife International. 2016. Lophophorus lhuysii. The IUCN Red List of Threatened Species 2016:e.T22679192A92806697[EB/OL]. (2021-01-01)[2021-05-10]. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679192A92806697.en.
Brickle NW. 2002. Habitat use, predicted distribution and conservation of green peafowl (Pavo muticus) in Dak Lak Province, Vietnam[J]. Biological Conservation, 105(2):189-197.
Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines[J]. Proceedings of the National Academy of Sciences, 114(30):6089-6096.
CITES. 2016. Convention on international trade in endangered species of wild fauna and flora (CITES) appendices Ⅰ, Ⅱ and Ⅲ[EB/OL].[2021-05-10]. https://cites.org.
Cui K, Li W, James JG, et al. 2019. The first draft genome of Lophophorus:a step forward for Phasianidae genomic diversity and conservation[J]. Genomics, 111(6):1209-1215.
Evangelista PH, Kumar S, Stohlgren TJ, et al. 2008. Modelling invasion for a habitat generalist and a specialist plant species[J]. Diversity and Distributions, 14(5):808-817.
Fahrig L. 2003. Effects of habitat fragmentation on biodiversity[J]. Annual Review of Ecology Evolution & Systematics, 34:487-515.
Hijmans RJ, Cameron SE, Parra JL, et al. 2005. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 25(15):1965-1978.
O'Brien TG, Kinnaird MF, Wibisono HT. 2003. Crouching tigers, hidden prey:Sumatran tiger and prey populations in a tropical forest landscape[J]. Animal Conservation, 6:131-139.
Phillips SJ, Dudík M, Schapire RE. 2019. MaxEnt software for modeling species niches and distributions (Version 3.4.1)[EB/OL].[2021-5-10]. https://biodiversityinformatics.amnh.org/open_source/maxent/.
Swets JA. 1988. Measuring the accuracy of diagnostic systems[J]. Science, 240(4857):1285-1293.
Wang B, Xu Y, Price M, et al. 2021. Niche partitioning among three montane ground-dwelling pheasant species along multiple ecological dimensions[J]. IBIS, 163(1):171-182.
Wang B, Xu Y, Ran J. 2017. Predicting suitable habitat of the Chinese monal (Lophophorus lhuysii) using ecological niche modeling in the Qionglai Mountains, China[J/OL]. PeerJ, 5(7):e3477[2021-03-10]. https://doi.org/10.7717/peerj.3477.eCollection 2017.
Xu Y, Wang B, Zhong X, et al. 2020. Predicting range shifts of the Chinese monal (Lophophorus lhuysii) under climate change:implications for long-term conservation[J/OL]. Global Ecology and Conservation, 22:e01018[2021-03-10]. https://doi.org/10.1016/j.gecco.2020.e01018.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准连续出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2021四川动物》编辑部 蜀ICP备08107403号-3
您是本站第10600014名访问者

川公网安备 51010702000173号