刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2020年第39卷第3期

林麝化脓病病原菌化脓隐秘杆菌与铜绿假单胞菌互作机制研究
Interspecific Interaction Between Pseudomonas aeruginosa and Trueperella pyogenes From the Abscesses Disease of Moschus berezovskii
袁阳, 李静, 张爱雪, 林家富, 褚以文, 王欣荣*, 赵克雷*
点击:128次 下载:23次
DOI:10.11984/j.issn.1000-7083.20200014
作者单位:抗生素研究与再评价四川省重点实验室, 四川抗菌素工业研究所, 成都大学, 成都 610052
中文关键字:林麝;化脓病;化脓隐秘杆菌;铜绿假单胞菌;基因敲除;种间相互作用
英文关键字:Moschus berezovskii; abscess disease; Trueperella pyogenes; Pseudomonas aeruginosa; gene knock-out; interspecific interaction
中文摘要:化脓隐秘杆菌Trueperella pyogenes是我国Ⅰ级重点保护野生动物林麝Moschus berezovskii的化脓病原发病原菌,但在化脓病后期的病灶中常能检测到大量铜绿假单胞菌Pseudomonas aeruginosa。虽然在病灶中能同时分离到这2种病原菌,但是它们的种间关系以及优势菌转换机制很大程度上未知。本研究通过构建多种铜绿假单胞菌群体感应基因敲除菌株并结合平板距离培养实验,探讨了化脓隐秘杆菌与铜绿假单胞菌的种间互作关系。结果发现,野生型铜绿假单胞菌的胞外产物可以显著抑制化脓隐秘杆菌的生长;不同铜绿假单胞菌群体感应关键基因缺失菌株均表现出对化脓隐秘杆菌不同程度的抑制作用,但与单突变菌株相比,lasRrhlR双突变菌株对化脓隐秘杆菌的抑制作用明显减弱。这些发现表明,铜绿假单胞菌可以通过群体感应系统介导的胞外产物来提高对化脓隐秘杆菌的竞争优势。因此,本研究为林麝化脓病过程中的优势病原菌的替换和病情恶化甚至死亡提供了合理的解释,也有助于进一步提高对林麝化脓病病理的认识、治疗方案的改进和新型抗感染药物的研发。
英文摘要:Trueperella pyogenes is the primary pathogen of the abscess disease of forest musk deer (Moschus berezovskii), but a large amount of Pseudomonas aeruginosa can usually be detected in the purulent lesions of dying or dead deer. Although these 2 pathogenic bacteria can be co-isolated, their interaction relationship and the transition mechanism of predominant bacteria in abscess lesions are largely unknown. In this study, the interspecific interaction of P. aeruginosa with T. pyogenes was explored by constructing different mutant strains in P. aeruginosa quorum-sensing (QS) system and performing a series of detailed in vitro proximity assays. The results showed that the extracellular product of P. aeruginosa could significantly inhibit the growth of neighboring T. pyogenes. In comparison to the wild-type P. aeruginosa, knock-out of any core regulatory genes of P. aeruginosa QS system would impair the inhibition of P. aeruginosa on T. pyogenes, albeit the growth of T. pyogenes could still be blocked by the presence of the extracellular products of P. aeruginosa QS mutants. Notably, the double mutant strain PAO1-ΔlasRrhlR had the slightest inhibitory effect on T. pyogenes. These findings suggested that P. aeruginosa had significant competitive advantage over T. pyogenes by producing various QS-controlled extracellular products. Therefore, the current study provides a reasonable explanation for the transition of dominant bacterial species during the development of forest musk deer abscess diseases, contributes to further understanding the pathology of forest musk deer abscess diseases, the improvement of treatment options and the development of novel anti-infective drugs.
2020,39(3): 241-248 收稿日期:2020-01-08
分类号:Q939.1;Q959.8;R378
基金项目:四川省科学技术协会青年人才托举工程项目(2018RCTJ);重大新药创制项目(2018ZX09711-001)
作者简介:袁阳(1995—),男,硕士,研究方向:病原菌互作机制
*通信作者:王欣荣, E-mail:wang1593@sina.com;赵克雷, E-mail:zkl5228@163.com
参考文献:
罗燕, 程建国, 李秋波. 2006. 麝大肠杆菌性化脓病的病原分离鉴定[J]. 黑龙江畜牧兽医, 11: 81-83.
袁阳, 李静, 王欣荣, 等. 2019. 铜绿假单胞菌群体感应系统介导的呼吸道病原菌种间互作研究进展[J]. 四川动物, 38(4): 472-480.
赵克雷, 李旭鑫, 帕哈尔定·帕拉哈提, 等. 2011. 圈养林麝脓肿病病原菌分离鉴定及药敏分析[J]. 四川动物, 30(4): 522-526.
Balasubramanian D, Schneper L, Kumari H, et al. 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence[J]. Nucleic Acids Research, 41(1): 1-20.
Baron SS, Terranova G, Rowe JJ. 1989. Molecular mechanism of the antimicrobial action of pyocyanin[J]. Current Microbiology, 18(4): 223-230.
Biswas L, Biswas R, Schlag M, et al. 2009. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 75(21): 6910-6912.
Choi Y, Park HY, Park SJ, et al. 2011. Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa[J]. Molecules and Cells, 32(1): 57-65.
Dandekar AA, Greenberg EP. 2013. Microbiology: plan b for quorum sensing [J]. Nature Chemical Biology, 9(5): 292-293.
Guo Q, Kong W, Jin S, et al. 2014. PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1[J]. Journal of Basic Microbiology, 54(7): 633-643.
Hotterbeekx A, Kumar-Singh S, Goossens H, et al. 2017. In vivo and in vitro interactions between Pseudomonas aeruginosa and Staphylococcus spp.[J]. Frontiers in Cellular and Infection Microbiology, 7: 106.
Huang T, Song X, Zhao K, et al. 2018. Quorum-sensing molecules N-Acyl homoserine lactones inhibit Trueperella pyogenes infection in mouse model[J]. Veterinary Microbiology, 213: 89-94.
Jacobs MA, Alwood A, Thaipisuttikul I, et al. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Science of the United States of America, 100(24): 14339-14344.
Jost BH, Billington SJ. 2005. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist[J]. Antonie van Leeuwenhoek, 88(2): 87-102.
Khare A, Tavazoie S. 2015. Multifactorial competition and resistance in a two-species bacterial system[J/OL]. PLoS Genetics, 11: e1005715[2019-11-10]. https://doi.org/10.1371/journal.pgen.1005715.
Little AE, Robinson CJ, Peterson SB, et al. 2008. Rules of engagement: interspecies interactions that regulate microbial communities[J]. Annual Review of Microbiology, 62: 375-401.
Orazi G, O'Toole GA. 2019. ‘It takes a village’: mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms[J]. Journal of Bacteriology, pii: JB.00530-19.
Peters BM, Jabra-Rizk MA, O'May GA, et al. 2012. Polymicrobial interactions: impact on pathogenesis and human disease[J]. Clinical Microbiology Reviews, 25(1): 193-213.
Pragman AA, Berger JP, Williams BJ. 2016. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms[J]. Clinical Pulmonary Medicine, 23(2): 57.
Schuster M, Lostroh CP, Ogi T, et al. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis[J]. Journal of Bacteriology, 185(7): 2066-2079.
Short FL, Murdoch SL, Ryan RP, et al. 2014. Polybacterial human disease: the ills of social networking[J]. Trends in Microbiology, 22(9): 508-516.
Stover CK, Pham XQ, Erwin AL, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature, 406(6799): 959-964.
Tognon M, Köhler T, Luscher A, et al. 2019. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture[J/OL]. BMC Genomics, 20(1): 30[2019-11-10]. https://doi.org/10.1186/s12864-018-5398-y.
Valentini M, Gonzalez D, Mavridou DA, et al. 2018. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa[J]. Current Opinion in Microbiology, 41: 15-20.
Zhao K, Du L, Lin J, et al. 2018. Pseudomonas aeruginosa quorum-sensing and type VI secretion system can direct interspecific coexistence during evolution[J/OL]. Frontiers in Microbiology, 9: 2287[2019-10-30]. https://doi.org/10.3389/fmicb.2018.02287.
Zhao K, Li W, Huang T, et al. 2017. Comparative transcriptome analysis of Trueperella pyogenes reveals a novel antimicrobial strategy[J]. Archives of Microbiology, 199: 649-655.
Zhao K, Li W, Li J, et al. 2019b. TesG is a type Ⅰ secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection[J]. Nature Microbiology, 4(3): 459-469.
Zhao K, Liu Y, Zhang X, et al. 2011. Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer[J]. Journal of Medical Microbiology, 60(Pt 12): 1820-1826.
Zhao K, Ma J, Wang X, et al. 2019a. Population divergence of Pseudomonas aeruginosa can lead to the coexistence with Escherichia coli in animal suppurative lesions[J]. Veterinary Microbiology, 231(168): 169-176.
Zhao K, Tian Y, Yue B, et al. 2013. Virulence determinants and biofilm production among Trueperella pyogenes recovered from abscesses of captive forest musk deer[J]. Archives of Microbiology, 195(3): 203-209.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2020四川动物》编辑部 蜀ICP备08107403号
您是本站第8653864名访问者

川公网安备 51010702000173号