刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2019年第38卷第1期

峨眉山与黄山藏酋猴肠道菌群组成的比较
Comparison of Gut Microbiome in Macaca thibetana Between Mount Emei and Mount Huangshan
翟子豪1, 宋飏1, 王俊茵2, 张可俊2, 孙丙华3*, 李静1*
点击:537次 下载:0次
DOI:10.11984/j.issn.1000-7083.20180183
作者单位:1. 四川大学生命科学学院, 生物资源与生态环境教育部重点实验室, 四川省濒危野生动物保护生物学 重点实验室, 成都 610065;
2. 峨眉山景区管委会, 峨眉山生物多样性保护研究所, 四川峨眉山 614200;
3. 安徽大学资源与环境工程学院, 安徽省黄山生物多样性与短尾猴行为生态学国际联合研究中心, 合肥 230039
中文关键字:藏酋猴;峨眉山;黄山;肠道微生物;多样性;16S rRNA基因
英文关键字:Macaca thibetana; Mount Emei; Mount Huangshan; gut microbiome; diversity; 16S rRNA gene
中文摘要:峨眉山和黄山都是我国著名的藏酋猴Macaca thibetana生态旅游地,对两地藏酋猴肠道微生物群落结构的比较研究,有助于了解不同生境、不同旅游管理方式对野生灵长类动物的影响。本研究对峨眉山藏酋猴M. t. thibetana肠道微生物16S rRNA基因进行测序,并与黄山藏酋猴M. t. huangshanensis肠道微生物的群落结构进行了比较。结果显示,两地藏酋猴肠道菌群有大量共有的可操作分类单元,而群落组成和多样性方面存在较大差异。峨眉山藏酋猴肠道菌群的优势门类为厚壁菌门Firmicutes(69.04%±11.81%)、拟杆菌门Bacteroidetes(21.59%±10.05%)和放线菌门Actinobacteria(2.73%±2.17%);黄山藏酋猴为厚壁菌门(46.34%±8.15%)、拟杆菌门(36.75%±6.38%)和变形菌门Proteobacteria(14.91%±8.06%)。在属级水平上,峨眉山藏酋猴肠道丰度最高的为颤螺菌属Oscillospira(23.49%±16.63%),黄山藏酋猴为普氏菌属Prevotella(36.35%±9.15%)。在群落多样性方面,黄山藏酋猴α多样性指数显著低于峨眉山,且两者的菌群结构也产生了显著分化。PICRUSt功能富集分析显示,峨眉山藏酋猴在脂类代谢、外源化学物的降解与代谢等通路显著富集,而黄山藏酋猴在多糖的合成与代谢等通路显著富集。研究还发现峨眉山藏酋猴肠道存在一定丰度的传染性致病菌,这可能与峨眉山的生态旅游有关。
英文摘要:Mount Emei (EM) and Mount Huangshan (HS) are both famous for the Macaca thibetana ecotourism in China. Study on the composition difference of gut microbiome in M. thibetana from these 2 places will improve our understanding of the effects of habitats and tourism managements on wild primates. In this study, 16S rRNA gene was used as molecular marker to explore the gut microbiome of M. t. thibetana in EM, and M. t. huangshanensis in HS. The result showed that a large number of operational taxonomic units were shared by the gut microbiome of M. thibetana from EM and HS. Remarkably, significant differences were detected in community composition and microbial diversity. The dominant phylum microbial communities in EM were Firmicutes (69.04%±11.81%), Bacteroidetes (21.59%±10.05%) and Actinobacteria (2.73%±2.17%). By contrast, Firmicutes (46.34%±8.15%), Bacteroidetes (36.75%±6.38%) and Proteobacteria (14.91%±8.06%) were the dominant in HS. The most abundant genus in EM was Oscillospira (23.49%±16.63%) and that in HS was Prevotella (36.35%±9.15%). In terms of the community diversity, the α diversity index in HS was significantly lower than EM, and their microbial community structures also had a significant difference. PICRUSt analysis revealed that the enriched KEGG pathways of gut microbiome in EM were lipid metabolism and xenobiotics biodegradation and metabolism. Differently, glycan biosynthesis and metabolism, etc were enriched in HS. In addition, several infectious pathogenic bacteria were found in the gut of EM, and this was probably related to the ecotourism in EM.
2019,38(1): 1-10 收稿日期:2018-06-12
分类号:Q959.848
基金项目:国家自然科学基金项目(31530068,31770415)
作者简介:翟子豪,男,主要研究藏酋猴肠道微生物,E-mail:zhaizihaoace@yeah.net
*通信作者:孙丙华,E-mail:binghuasun00@126.com;李静,E-mail:ljtjf@126.com
参考文献:
蒋学龙, 王应祥, 王歧山. 1996. 藏酋猴的分类与分布[J]. 动物学研究, 17(4): 361-369.
蒋志刚, 江建平, 王跃招, 等. 2016. 中国脊椎动物红色名录[J]. 生物多样性, 24(5): 500-551.
孙丙华, 李进华, 夏东坡, 等. 2010. 比较不同旅游管理模式对短尾猴(Macaca thibetana)分群的影响[J]. 安徽大学学报(自然科学版), 34(5): 104-108.
熊成培. 1984. 短尾猴的生态研究[J]. 兽类学报, 4(1):1-9.
尤硕愚. 2013. 黄山短尾猴食物选择的研究[D]. 合肥: 安徽大学.
Backhed F, Ding H, Wang T, et al. 2004. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(44): 15718-15723.
Berman CM, Li J, Ogawa H, et al. 2007. Primate tourism, range restriction, and infant risk among Macaca thibetana at Mt. Huangshan, China[J]. International Journal of Primatology, 28(5): 1123-1141.
Bokulich NA, Subramanian S, Faith JJ, et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 10(1): 57-59.
Caporaso JG, Kuczynski J, Stombaugh J, et al. 2010. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 7(5): 335-336.
Clarke SF, Murphy EF, Nilaweera K, et al. 2012. The gut microbiota and its relationship to diet and obesity: new insights[J]. Gut Microbes, 3(3): 186-202.
Clayton JB, Vangay P, Huang H, et al. 2016. Captivity humanizes the primate microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(37): 10376-10381.
David LA, Maurice CF, Carmody RN, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 505(7484): 559-563.
Deng P, Swanson KS. 2015. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges[J]. British Journal of Nutrition, 113(S1): S6-S17.
Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 26(19): 2460-2461.
Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998.
Egert M, De Graaf AA, Smidt H, et al. 2006. Beyond diversity: functional microbiomics of the human colon[J]. Trends in Microbiology, 14(2): 86-91.
Filippo CD, Cavalieri D, Paola MD, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(33): 14691-14696.
Jindou S, Borovok I, Rincon MT, et al. 2006. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens[J]. Journal of Bacteriology, 188(22): 7971-7976.
Karlsson F, Svartstrom O, Belak K, et al. 2013. Occurrence of Treponema spp. in porcine skin ulcers and gingiva[J]. Veterinary Microbiology, 165(3-4): 402-409.
Langille MG, Zaneveld J, Caporaso JG, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 31(9): 814-821.
Long YC, Richardson M. 2008. Macaca thibetana[DB/OL]. (2018-04-20). The IUCN Red List of Threatened Species 2008: e.T12562A3359510.
Lozupone C, Lladser ME, Knights D, et al. 2011. UniFrac: an effective distance metric for microbial community comparison[J]. The ISME Journal, 5(2): 169-172.
Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
Matheson MD, Sheeran LK, Li JH, et al. 2006. Tourist impact on Tibetan macaques[J]. Anthrozoos, 19(2): 158-168.
Mcdonald D, Price MN, Goodrich J, et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[J]. The International Society for Microbial Ecology Journal, 6(3): 610-618.
Nuriel-Ohayon M, Neuman H, Koren O. 2016. Microbial changes during pregnancy, birth, and infancy[J]. Frontiers in Microbiology, 7: 1031. DOI: 10.3389/fmicb.2016.01031.
Pedersen AB, Davies TJ. 2009. Cross-species pathogen transmission and disease emergence in primates[J]. Ecohealth, 6(4): 496-508.
Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix[J]. Molecular Biology and Evolution, 26(7): 1641-1650.
Quast C, Pruesse E, Yilmaz P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 41(D1): D590-D596.
Russell JB, Baldwin RL. 1979. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture[J]. Applied and Environmental Microbiology, 37(3): 537-543.
Schloss PD, Westcott SL, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-7541.
Schwan TG. 1996. Ticks and Borrelia: model systems for investigating pathogen-arthropod interactions[J]. Infectious Agents and Disease, 5(3): 167-181.
Segata N, Izard J, Waldron L, et al. 2011. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 12(6): R60.
Sievers F, Wilm A, Dineen D, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega[J]. Molecular Systems Biology, 7(1): 539.
Sun B, Wang X, Sofi B, et al. 2016. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana)[J]. Scientific Reports, 6: 26035. DOI: 10.1038/srep26035.
Uenishi G, Fujita S, Ohashi G, et al. 2007. Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity[J]. American Journal of Primatology, 69(4): 367-376.
Vaishampayan PA, Kuehl JV, Froula JL, et al. 2010. Comparative metagenomics and population dynamics of the gut microbiota in mother and infant[J]. Genome Biology and Evolution, 2(1): 53-66.
Wang W, Cao J, Li JR, et al. 2016. Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing[J]. Microbiological Research, 182: 59-67.
Yasuda K, Oh K, Ren B, et al. 2015. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque[J]. Cell Host & Microbe, 17(3): 385-391.
Zhao J, Yao Y, Li D, et al. 2018. Characterization of the gut microbiota in six geographical populations of chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment[J]. Microbial Ecology, 76(2): 565-577.
Zhao QK. 1994. A study on semi-commensalism of Tibetan Macaques at Mt. Emei, China[J].Revue D Ecologie-La Terre Et La Vie, 49(3): 259-271.
Zhao QK. 1997. Intergroup interactions in Tibetan macaques at Mt. Emei, China[J]. American Journal of Physical Anthropology, 104(4): 459-470.
Zhao QK, Deng ZY, Xu JM. 1991. Natural foods and their ecological implications for Macaca thibetana at Mount Emei, China[J]. Folia Primatologica, 57(1): 1-15.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2019四川动物》编辑部 蜀ICP备08107403号-3
您是本站第7330680名访问者

川公网安备 51010702000173号