刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610064
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2017年第36卷第6期

红尾蚺和原矛头蝮基因组微卫星分布特征比较分析
Comparative Analysis of Microsatellite Distributions in Genomes of Boa constrictor and Protobothrops mucrosquamatus
聂虎, 曹莎莎, 赵明朗, 杜林方*
点击:45次 下载:0次
DOI:
作者单位:四川大学生命科学学院, 生物资源与生态环境教育部重点实验室, 成都 610065
中文关键字:红尾蚺;原矛头蝮;基因组微卫星;丰度分布
英文关键字:Boa constrictor; Protobothrops mucrosquamatus; genomic microsatellites; abundance distribution
中文摘要:本研究分析比较了红尾蚺Boa constrictor和原矛头蝮Protobothrops mucrosquamatus基因组微卫星的分布特征,通过MISA分别鉴定出398 860个和422 364个微卫星,其长度分别为8 550 741 bp和12 243 226 bp,分别占基因组序列总长度的0.59%和0.73%,在各自基因组中的丰度分别为275.46个/Mbp和252.33个/Mbp。红尾蚺基因组中单碱基重复类型微卫星最多,其次是四碱基、二碱基、三碱基、五碱基和六碱基,最丰富的5种微卫星类型是A、AC、AAAT、AG、AAT;原矛头蝮基因组中单碱基重复类型微卫星最多,其次是三碱基、四碱基、二碱基、五碱基和六碱基,最丰富的5种微卫星类型是A、AAT、AC、C、AAAT。红尾蚺和原矛头蝮微卫星在基因组不同区域丰度不同,基因间区丰度最高,其次是内含子和外显子,编码区微卫星丰度最低,表明编码区微卫星受到的选择压力最大。红尾蚺和原矛头蝮在基因中微卫星丰度分布的位置特征相似,即微卫星在基因上下游500 bp丰度最高,在内含子次之,在外显子最低。红尾蚺和原矛头蝮基因编码区所有6种重复类型微卫星中,三碱基重复类型占绝对优势。红尾蚺和原矛头蝮基因组中含有微卫星的编码序列分别有1 480条和1 397条,被GO注释的分别有736条和733条。它们的GO功能归类结果类似,但是与其他物种相比存在种系差异。本研究结果为后续开发这2种蛇的高质量微卫星标记提供了方便,也为进一步探索这些微卫星在它们基因组中的生物学功能提供了有意义的基础数据。
英文摘要:In this study, we analyzed and compared the distributions of perfect microsatellites in the genomes of Boa constrictor and Protobothrops mucrosquamatus. Using the MISA tool, a total of 398 860 and 422 364 microsatellites were identified in genomes of B. constrictor and P. mucrosquamatus, respectively. The total length of the identified microsatellites was 8 550 741 bp in B. constrictor and 12 243 226 bp in P. mucrosquamatus, accounting for 0.59% and 0.73% of each genome, respectively. The abundance of microsatellites was 275.46 no./Mbp in B. constrictor and 252.33 no./Mbp in P. mucrosquamatus. In B. constrictor genome, mono-nucleotide repeat was the most abundant, followed by tetra-nucleotide, di-nucleotide, tri-nucleotide, penta-nucleotide and hexa-nucleotide repeat, and A、AC、AAAT、AG、AAT were the 5 most abundant repeat units. In P. mucrosquamatus genome, mono-nucleotide repeat was the most abundant, followed by tri-nucleotide, tetra-nucleotide, di-nucleotide, penta-nucleotide and hexa-nucleotide, and A、AAT、AC、C、AAAT were the 5 most abundant repeat units. In both species, the abundances of microsatellites in intergenic region was the highest, followed by intron region and exon region, and the lowest was in coding region. These phenomena indicated that microsatellites in coding sequences were subject to the greatest selective pressure. The positional specificity of microsatellite abundance distributions in these 2 snakes were similar, that is, the abundance of microsatellites was the highest in the upstream and downstream 500 bp regions of genes, followed by intron regions and exon regions. Tri-nucleotide repeat was dominant among the 6 repeat units in the coding sequences of both genomes. The number of coding sequences containing microsatellites were 1 480 and1 397, among which 736 and 733 were assigned with GO terms of known function in genomes of B. constrictor and P. mucrosquamatus, respectively. These coding sequences resulted the similar GO classification outputs, but behaved in a lineage manner comparing with other species. This study made a great convenience to develop large number of high-quality microsatellite markers for these two snakes and provided meaningful underlying data for further exploration of the biological function of microsatellites in their genomes.
2017,36(6): 639-648 收稿日期:2017-03-08
DOI:10.11984/j.issn.1000-7083.20170070
分类号:Q959.6;Q915.864
作者简介:聂虎(1991-),男,硕士研究生,主要从事生物信息学研究
*通讯作者:杜林方,E-mail:dulinfang@scu.edu.cn
参考文献:
高焕, 刘萍, 孟宪红, 等. 2004. 中国对虾(Fenneropenaeus chinensis)基因组微卫星特征分析[J]. 海洋与湖沼, 35(5):249-254.
李成云, 李进斌, 周晓罡, 等. 2004. 粗糙脉孢菌基因组中的微卫星序列的组成和分布[J]. 中国农业科学, 37(6):851-858.
李午佼, 李玉芝, 杜联明, 等. 2014. 大熊猫和北极熊基因组微卫星分布特征比较分析[J]. 四川动物, 33(6):874-878.
魏朝明, 孔光耀, 廉振民, 等. 2007. 蜜蜂全基因组中微卫星的丰度及其分布[J]. 昆虫知识, 44(4):501-504.
Conesa A, Götz S, García-Gómez JM, et al. 2005. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 21(18):3674-3676.
Fujimori S, Washio T, Higo K, et al. 2003. A novel feature of microsatellites in plants:a distribution gradient along the direction of transcription[J]. FEBS Letters, 554(1):17-22.
Jurka J, Pethiyagoda C. 1995. Simple repetitive DNA sequences from primates:compilation and analysis[J]. Journal of Molecular Evolution, 40(2):120-126.
Kajitani R, Toshimoto K, Noguchi H, et al. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads[J]. Genome Research, 24(8):1384-1395.
Kashi Y, King DG. 2006. Simple sequence repeats as advantageous mutators in evolution[J]. Trends in Genetics, 22(5):253-259.
Katti MV, Ranjekar PK, Gupta VS. 2001. Differential distribution of simple sequence repeats in eukaryotic genome sequences[J]. Molecular Biology and Evolution, 18(7):1161-1167.
Kerkkamp HM, Kini RM, Pospelov AS, et al. 2016. Snake genome sequencing:results and future prospects[J]. Toxins, 8(12):360-375.
Laurie JV, Janalee PC. 2009. Herpetology:an introduction biology of amphibians and reptiles (third edition)[M]. London:Academic Press:551-578.
Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL:identification of ortholog groups for eukaryotic genomes[J]. Genome Research, 13(9):2178-2189.
Li YC, Korol AB, Fahima T, et al. 2004. Microsatellites within genes:structure, function, and evolution[J]. Molecular Biology and Evolution, 21(6):991-1007.
Lin WH, Kussell E. 2012. Evolutionary pressures on simple sequence repeats in prokaryotic coding regions[J]. Nucleic Acids Research, 40(6):2399-2413.
Loire E, Higuet D, Netter P, et al. 2013. Evolution of coding microsatellites in primate genomes[J]. Genome Biology and Evolution, 5(2):283-295.
Reyes-Velasco J, Card DC, Andrew AL, et al. 2015. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom[J]. Molecular Biology and Evolution, 32(1):173-183.
Thiel T, Michalek W, Varshney R, et al. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetics, 106(3):411-422.
Tóth G, Gáspári Z, Jurka J. 2000. Microsatellites in different eukaryotic genomes:survey and analysis[J]. Genome Research, 10(7):967-981.
Wang C, Kubiak L, Du L, et al. 2016. Comparison of microsatellite distribution in genomes of Centruroides exilicauda and Mesobuthus martensii[J]. Gene, 594(1):41-46.
Yin W, Wang Z, Li Q, et al. 2016. Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper[J]. Nature Communications, 13107(7):1-11.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2017四川动物》编辑部 蜀ICP备08107403号-3
您是本站第5906278名访问者

川公网安备 51010702000173号