刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610064
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2017年第36卷第5期

美洲大蠊基因组重复序列分析
Analysis of Repetitive Sequences in Periplaneta americanana Genome
牟必琴1, 严超超1, 李午佼1, 李静1, 沈咏梅2, 岳碧松1*
点击:30次 下载:0次
DOI:
作者单位:1. 四川大学生命科学学院, 生物资源与生态环境教育部重点实验室, 成都 610064;
2. 药用美洲大蠊四川省重点实验室, 成都 610081
中文关键字:美洲大蠊;基因组;重复序列;转座子;BovB逆转录转座子;系统进化
英文关键字:Periplaneta americana; genome; repetitive sequences; transposable element; BovB retrotransposon; phylogeny
中文摘要:重复序列是真核生物基因组的重要组成部分。一些重复序列,如自主型的逆转录转座子LINE,在昆虫的系统进化和遗传多样性研究方面得到了广泛的应用。de novo从头预测和基于同源比对预测相结合的方法被用来搜索美洲大蠊Periplaneta americana基因组,共鉴定出大约占全基因组62%的重复序列。研究发现,散在重复序列中,DNA转座子占美洲大蠊基因组的16.18%;逆转座元件中LINE最多,占基因组的13.64%,SINE和LTR分别占基因组的3.52%和1.32%。LINEs中的BovB亚家族在所有转座子亚家族中比例最高(约6.73%)。美洲大蠊与德国小蠊Blattella germanica相比,除LTR外,其他类型的转座子占基因组的比例均高于德国小蠊。通过分析逆转录转座子反转录酶完整度、氨基酸序列相似度及遗传距离,从美洲大蠊基因组中鉴定出一类BovB逆转录转座子:RTE-1_PAm。BovBs的反转录酶氨基酸序列的系统树表明,美洲大蠊与内华达古白蚁Zootermopsis nevadensis的进化关系比与其同属蜚蠊科Blattidae的德国小蠊的关系更近。昆虫中BovB逆转录转座子的进化关系与传统核基因进化关系的不同,表明转座子的进化相对宿主基因的进化具有一定的独立性。
英文摘要:Repetitive sequences constitute a large fraction of a eukaryote genome. Some classes of repetitive sequences, such as LINEs, which are a member of autonomous transposons, have been widely applied in molecular phylogenetic and genetic diversity studies of insects. In this study, de novo prediction and homology alignment were used to search the repetitive sequences in Periplaneta americana genome, and the results showed that the screened repetitive sequences accounted for approximately 62% of the genome. Among interspersed repetitive sequences, the DNA transposons constituted 16.18% of the whole genome. In retrotransposons, LINEs accounted for 13.64% of the genome followed by SINE (3.52%) and LTR (1.32%), respectively. The BovB superfamily in LINEs was the most abundant (6.73%) compared to other classes of transposons.The proportion of all classes of transposable elements in P. americana were higher than that of Blattella germanica except the LTRs. According to the integrality of the reverse transcriptase of retrotransposons, similarities and genetic distance of the amino acid sequences, a kind of BovB retrotransposons were identified in P. americana genome and named RTE-1_PAm. Phylogenetic analyses based on the amino acid sequences of BovB reverse transcriptase indicated that P. americana shared closer relationship with Zootermopsis nevadensis than with B. germanica which are both Blattidae. The difference of phylogenetic analyses results among these insects inferred by using retrotransposons and karyogene suggested an independent evolutional history of TEs relative to the host karyogene.
2017,36(5): 540-547 收稿日期:2017-02-22
DOI:10.11984/j.issn.1000-7083.20170051
分类号:Q78
作者简介:牟必琴,女,硕士研究生,研究方向:基因和遗传信息分析,E-mail:435077636@qq.com
*通讯作者:岳碧松,E-mail:bsyue@scu.edu.cn
参考文献:
Adelson DL, Raison JM, Edgar RC. 2009. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome[J]. Proceedings of the National Academy of Sciences, 106(31):12855-12860.
Arcà B, Savakis C. 2000. Distribution of the transposable element Minos in the genus Drosophila[J]. Genetica, 108(3):263.
Arensburger P, Megy K, Waterhouse RM, et al. 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics[J]. Science, 330(6000):86-88.
Bao W, Kojima KK, Kohany O. 2015.Repbase update, a database of repetitive elements in eukaryotic genomes[J]. Mobile DNA, 6(1):11.
Chalopin D, Fan S, Simakov O, et al. 2014. Evolutionary active transposable elements in the genome of the coelacanth[J]. Journal of Experimental Zoology Part B Molecular & Developmental Evolution, 322(6):322-333.
Chalopin D, Naville M, Plard F, et al. 2015. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates[J]. Genome Biology Evolution, 7(2):567-580.
Charlesworth B, Sniegowski P, Stephan W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes[J]. Nature, 371(6494):215-220.
Clark AG, Eisen MB. 2007. Evolution of genes and genomes on the Drosophila phylogeny[J]. Nature, 450(7167):203-218.
Clark JB, Kidwell MG. 1997. A phylogenetic perspective on P transposable element evolution in Drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 94(21):11428.
Consortium THG, Dasmahapatra KK, Walters C, et al. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species[J]. Nature, 487(7405):94-98.
Eickbush TH, Malik HS, Eickbush TH. 2002. Origins and evolution of retrotransposons[J]. Mobile DNA:1111-1144.
Gentles AJ, Wakefield MJ, Kohany O, et al. 2007. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica[J]. Genome Research, 17(7):992-1004.
Hu Q, Ma T, Wang K, et al. 2012. The yak genome database an integrative database for studying yak biology and high-altitude adaption[J]. BMC Genomics, 13(2):600.
Huang Y, Niu B, Gao Y, et al. 2010. CD-HIT suite:a web server for clustering and comparing biological sequences[J]. Bioinformatics, 26(5):680-682.
International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome[J]. Nature, 409:860-921.
Jurka J, Kapitonov VV, Pavlicek A, et al. 2005. Repbase update, a database of eukaryotic repetitive elements[J]. Cytogenetic & Genome Research, 110(1-4):462.
Kazazian HH. 2004. Mobile elements:drivers of genome evolution[J]. Science, 303(5664):1626-1632.
Kidwell M, Lisch D. 2002.Transposable elements as sources of genomic variation[M]//Craig NL, Cralgie R, Gellert M, et al. Mobile DNA Ⅱ. Washington DC:ASM Press:59-90.
Kordis D. 2009. Transposable elements in reptilian and avian (sauropsida) genomes[J]. Cytogenetic & Genome Research, 127(2-4):94-111.
Langley CH, Montgomery E, Hudson R, et al. 1988. On the role of unequal exchange in the containment of transposable element copy number[J]. Genetics Research, 52(3):223-235.
Lavoie CA, Platt RN, Novick PA, et al. 2013. Transposable element evolution in Heliconius, suggests genome diversity within Lepidoptera[J]. Mobile DNA, 4(1):21.
Le RA, Capy P. 2006. Population genetics models of competition between transposable element subfamilies[J]. Genetics, 174(2):785-793.
Love RR, Weisenfeld NI, Jaffe DB, et al. 2016. Evaluation of DISCOVAR de novo, using a mosquito sample for cost-effective short-read genome assembly[J]. BMC Genomics, 17(1):1-10.
Löytynoja A, Goldman N. 2010. webPRANK:a phylogeny-aware multiple sequence aligner with interactive alignment browser[J]. BMC Bioinformatics, 11(1):1-6.
Malik HS, Eickbush TH. 1998. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs[J]. Molecular Biology and Evolution, 15(9):1123-1134.
Misof B, Liu S, Meusemann K, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution[J]. Science, 346(346):763-767.
Morton WA, Kortschak RD, Gardner MG, et al. 2012. Widespread horizontal transfer of retrotransposons[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(3):1012-1016.
Ohshima K, Hamada M, Terai Y, et al. 1996. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements[J]. Molecular & Cellular Biology, 16(7):3756-3764.
Oliver KR, Greene WK. 2009. Transposable elements:powerful facilitators of evolution[J]. Bioessays, 31(7):703-714.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 19(12):1572-1574.
Sahlin K, Chikhi R, Arvestad L. 2016. Assembly scaffolding with PE-contaminated mate-pair libraries[J]. Bioinformatics, 32(13):btw064.
Sahlin K, Vezzi F, Nystedt B, et al. 2014. BESST-efficient scaffolding of large fragmented assemblies[J]. BMC Bioinformatics, 15(1):281.
Sánchezgracia A, Maside X, Charlesworth B. 2005.High rate of horizontal transfer of transposable elements in Drosophila[J]. Trends in Genetics, 21(4):200.
Sinkins S. 2007. Genome sequence of Aedes aegypti, a major arbovirus vector[J]. Science, 316(5832):1718-1723.
Smit A, Hubley R. 2008-2015. RepeatModeler open-1.0[EB/OL]. URL:http://www.repeatmasker.org.
Smit A, Hubley R, Green P. 2013-2015. RepeatMasker open-4.0[EB/OL]. URL:http://www.repeatmasker.org.
Sormacheva I, Smyshlyaev G, Mayorov V, et al. 2012. Vertical evolution and horizontal transfer of CR1 non-LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species[J]. Molecular Biology & Evolution, 29(12):3685-3702.
Sun C, Mueller RL. 2014. Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders[J]. Genome Biology & Evolution, 6(7):1818-1829.
Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology & Evolution, 28(10):2731-2739.
Tay WT, Behere GT, Batterham P, et al. 2010. Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes[J]. BMC Evolutionary Biology, 10(1):144.
Terrapon N, Li C, Robertson HM, et al. 2014. Molecular traces of alternative social organization in a termite genome[J]. Nature Communications, 5(6183):3636.
Thompson JD. 1999.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 22(22):4673-4680.
Webb CHT, Riccitelli NJ, Ruminski DJ, et al. 2011. Widespread occurrence of self-cleaving ribozymes[J]. Science, 326(5955):953.
Zhang HH, Feschotte C, Han MJ, et al.2014. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals[J]. Genome Biology & Evolution, 6(6):1375.
Zhao FQ, Qi J, Schuster SC. 2009. Tracking the past:interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius[J]. Genome Research, 19(19):1384-1392.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2017四川动物》编辑部 蜀ICP备08107403号-3
您是本站第5790724名访问者

川公网安备 51010702000173号