刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610064
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2015年第34卷第6期

MicroRNA在鱼类胚胎发育中的调控作用
The Roles of MicroRNA in Fish Embryonic Development
牛黛醇, 李效宇*
点击:483次 下载:36次
DOI:
作者单位:河南师范大学生命科学学院, 河南新乡453007
中文关键字:MicroRNA;鱼类;胚胎发育;调控
英文关键字:MicroRNA; fish; embryonic development; regulation
中文摘要:MicroRNA (miRNA)是一类长度为 21~23 个核苷酸的调控性小分子RNA,它们通过抑制蛋白质翻译或降解mRNA的方式负调控基因表达,在胚胎发育、细胞凋亡、细胞增殖分化和肿瘤发生中发挥重要作用。近年来,越来越多的研究证实miRNA在鱼类胚胎发育过程中具有重要的调控作用。本文就近年来miRNA在鱼类胚胎发育中的作用研究作一综述,以期为进一步探索miRNA在鱼类生长发育、生理过程及疾病防御中的作用提供理论基础。
英文摘要:MicroRNAs (miRNAs) were small non-coding regulatory RNAs (21-23 nucleotides) that can negatively regulate the expression of target genes by binding to the 3'-untranslated regions (3'-UTRs) of mRNAs, and resulting in miRNA-mediated mRNA decay or translational repression. These miRNAs played a key role in the embryonic development, apoptosis, cellular proliferation and differentiation, and tumorigenesis. In recent years, increasing studies had confirmed the important regulatory function of miRNAs in the embryonic development of fish. This review focused on the regulatory function of miRNAs in fish embryonic development to provide theoretical basis for further study on the function of miRNAs in fish growth, development, physiology, and disease prevention.
2015,34(6): 948-954 收稿日期:2015-03-12
DOI:10.11984/j.issn.1000-7083.20150091
分类号:Q781
基金项目:国家自然科学基金项目(31172415, 31472285)
作者简介:牛黛醇(1990—),女,硕士研究生,研究方向为水环境毒理学,E-mail:niudaichun1223@163.com
*通讯作者:李效宇,男,教授,博士生导师,E-mail:lixiaoyu65@263.net
参考文献:
丁雷, 同学春, 孙效文, 等. 2011. MicroRNAs对斑马鱼发育的调控[J]. 遗传, 33(11): 1179-1184.
郝克红, 段涛, 王凯, 等. 2011. MicroRNA的研究进展[J]. 医学综述, 17(19): 2884-2887.
唐雪莲, 李洪, 付京花. 2013. 鱼类microRNAs研究进展[J]. 水产科学, 32(1): 55-58.
王佳佳, 徐超, 屠云杰, 等. 2007. 斑马鱼及其胚胎在毒理学中的实验研究与应用进展[J]. 生态毒理学报, 2(2): 123-135.
张满仓, 吕艳, 戚艳婷, 等. 2008. 反义抑制和过表达miR-219引起斑马鱼胚胎发育异常[J]. 分子细胞生物学报, 41(5): 342-348.
Ambros V. 2004. The functions of animal microRNAs[J]. Nature, 431(7006): 350-355.
Banjo T, Grajcarek J, Yoshino D, et al. 2013. Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21[J]. Nature Communications, 4: 1978.
Bartel DP. 2004. MicroRNAs:genomics, biogenesis,mechanism, and function[J]. Cell, 116: 281-297.
Bekaert M, Natalie RL, Stephen CB, et al. 2013. Sequencing and characterisation of an extensive Atiantic salmo (Salmo salar L.) microRNA repertoire[J]. PLoS One, 8(7): e70136.
Betel D, Wilson M, Gabow A, et al. 2008. The microRNA.org resource:targets and expression[J]. Nucleic Acids Research, 36: D149-D153.
Biyashev D, Veliceasa D, Topczewski J, et al. 2012. miR-27b controls venous specification and tip cell fate[J]. Blood, 119: 2679-2687.
Bobe J, Andre S, Fauconneau B. 2000. Embryonic muscle development in rainbow trout (Oncorhynchus mykiss): a scanning electron microscopy and immunohistological study[J]. Journal of Experimental Zoology, 286(4): 379-389.
Borchert GM, Lanier W, Davidson BL. 2006. RNA polymerase Ⅲ transcribes human micro RNAs[J]. Nature Structural & Molecular Biology, 13: 1097-1101.
Bruneau BG. 2008. The development algenetics of congenital of congenital heart disease[J]. Nature, 451: 943-948.
Cavodeassi F, Concha ML, Houart C, et al. 2005. Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/b-catenin pathway[J]. Neuron, 47: 43-56.
Chi W, Tong C, Gan X, et al. 2011. Characterization and comparative profiling of miRNA transcriptomes in bighead carp and silver carp[J]. PLoS One, 6(8): e23549.
Chiavacci E, Dolfi L, Verduci L, et al. 2012. MicroRNA-218 mediates the effects of Tbx5a overexpression on zebrafish heart development[J]. PLoS One, 7: e50536.
Conte I, Carrella S, Avellino R, et al. 2010. miR-204 is required for lens and retinal development via Meis2 targeting[J]. Proceedings of the National Academy of Sciences, 107: 15491-15496.
Davis BN, Hata A. 2009. Regulation of microRNA biogenesis: a myriad of mechanisms[J]. Cell Communication and Signaling, 7: 18.
De Pater E, Clijsters L, Marques SR, et al. 2009. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart[J]. Development, 136: 1633-1641.
Deacon DC, Nevis KR, Cashman TJ, et al. 2010. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis[J]. Development, 137(11): 1887-1189.
Dore LC, Amigo JD, Dos Santos CO, et al. 2008. A GATA-1-regulated microRNA locus essential for erythropoiesis[J]. Proceedings of the National Academy of Sciences, 105: 3333-3338.
Dunworth WP, Cagavi E, Kim JD, et al. 2013. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos[J]. Circulation Research, 114: 56-66.
Eberhart JK, He X, Swartz ME, et al. 2008. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis[J]. Nature Genetics, 40: 290-298.
Fang Z, Rajewsky N. 2011. The impact of miRNA target sites in coding sequences and in 3'UTRs[J]. PLoS One, 6(3): e18067.
Fish JE, Wythe JD, Xiao T, et al. 2011. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish[J]. Development, 138: 1409-1419.
Flynt AS, Li N, Thatcher EJ, et al. 2007. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate[J]. Nature Genetics, 39(2): 259-263.
Fu Y, Shi Z, Wu M, et al. 2011. Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus)[J]. PLoS One, 6(7): 22957.
Gestri G, Link BA, Neuhauss S. 2012. The visual system of zebrafish and its use to model human ocular diseases[J]. Developmental Neurobiology, 72: 302-327.
Giraldez AJ, Cinalli RM, Glasner ME, et al. 2005. MicroRNAs regulate brain morphogenesis in zebrafish[J]. Science, 308: 833-838.
Giraldez AJ, Mishima Y, Rihel J, et al. 2006. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs[J]. Science, 312: 75-79.
Hami D, Grimes AC, Tsai HJ, et al. 2011. Zebrafish cardiac development requires a conserved secondary heart field[J]. Development, 138: 2389-2398.
He L, Hannon GJ. 2004. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 5: 522-531.
Huang J, Zhao L, Xing L, et al. 2010. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation[J]. Stem Cells, 28: 357-364.
IUCN. 2011. IUCN Red List of Threatened Species[EB/OL]. Version 2011. 2. [2012-03-02]. http://www.iucnredlist.org/.
Johansen SD, Karlsen BO, Furmanek T, et al. 2011. RNA deep sequencing of the Atlantic cod transcriptome[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 6(1): 18-22.
Johnston IA. 2006. Environment and plasticity of myogenesis in teleost fish[J]. Journal of Experimental Biology, 209: 2249-2264.
Kapralova KH, Franzdottir SR, Jonsson H, et al. 2014. Patterns of miRNA expression in Arctic charr development[J]. PLoS One, 9(8): e106084.
Kapsimali M, Kloosterman WP, Rosa F, et al. 2007. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system[J]. Genome Biology, 8: R173.
Karsenty G, Wagner EF. 2002. Reaching a genetic and molecular understanding of skeletal development[J]. Developmental Cell, 2: 389-406.
Kerr TA, Korenblat KM, Davidson NO. 2011. MicroRNAs and liver disease[J]. Translational Research, 157(4): 241-252.
Ketley A, Warren A, Holmes E, et al. 2013. The miR-30 MicroRNA family targets smoothened to regulate Hedgehog signaling in zebrafish early muscle development[J]. PLoS One, 8(6): e65170.
Lakshmipathy U, Hart RP. 2008. Concise Review: microRNA expression in multipotent mesenchymal stromal cells[J]. Stem Cells, 26(2): 356-363.
Lalwani MK, Sharma M, Singh AR, et al. 2012. Reverse genetics screen in zebrafish identifies a role of miR-142a-3p in vascular development and integrity[J]. PLoS One, 7: e52588.
Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 75: 843-854.
Lee Y, Ahn C, Han J, et al. 2003. The nuclear RNase Ⅲ Drosha initiates microRNA processing[J]. Nature, 425: 415-419.
Leucht C, Stigloher C, Wizenmann A, et al. 2008. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary[J]. Nature Neuroscience, 11(6): 641-648.
Lewis BP, Bartel DP, Burge CB, et al. 2003. Prediction of mammalian microRNA targets[J]. Cell, 115(7): 787-798.
Li SC, Chan WC, Ho MR, et al. 2010. Discovery and characterization of medaka miRNAs genes by next generation sequencing platform[J]. BMC Genomics, 11(Suppl 4): 8.
Lim B, Teh C, Shyh-Chang N, et al. 2009. MicroRNA-125b is a novel negative regulator of p53[J]. Genes Development, 23(7): 862-876.
Liu X, Ning G, Meng A, et al. 2012. MicroRNA-206 regulates cell movements during zebrafish gastrulation by targeting prickle1a and regulating c-Jun N-terminal kinase 2 phosphorylation[J]. Molecular and Cellular Biology, 32: 2934-2942.
Ma H, Hostuttler M, Wei H, et al. 2012. Characterization of the rainbow trout egg microRNA transcriptome[J]. PLoS One, 7(6): e39649.
Memczak S, Jens M, Elefsinioti A, et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 495: 333-338.
Mishima Y, Abreu-Goodger C, Staton AA, et al. 2009. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization[J]. Genes & Development, 23: 619-632.
Mitsuo N, Tadahisa S, Masato A, et al. 2010. Dual appearance of xanthophores, and ontogenetic changes in other pigment cells during early development of Japanese flounder Paralichthys olivaceus[J]. Fisheries Science (Tokyo), 76: 243-250.
Morton SU, Scherz PJ, Cordes KR, et al. 2008. MicroRNA-138 modulates cardiac patterning during embryonic development[J]. Proceedings of the National Academy of Sciences, 105: 17830-17835.
Nicoli S, Knyphausen CP, Lakshmanan A, et al. 2012. MiR-221 is required for endothelial tip cell behaviors during vascular development[J]. Developmental Cell, 22: 418-429.
Pasquinelli AE, Reinhart BJ, Shck FJ, et al. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 408(6808): 86-89.
Pierce ML, Weston MD, Fritzsch B, et al. 2008. MicroRNA-183 family conservation and ciliated neurosensory organ expression[J]. Evolution & Development, 10: 106-113.
Pillai RS, Bhattacharyya SN, Filipowicz W. 2007. Repression of protein synthesis by miRNAs: how many mechanisms?[J]. Trends in Cell Biology, 17: 118-126.
Ramachandran R, Fausett BV, Goldman D. 2010. Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signaling pathway[J]. Nature Cell Biology, 12: 1101-1107.
Reinhart BJ, Slack FJ, Basson M, et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 403: 901-906.
Salem M, Xiao C, Womack J, et al. 2010. A microRNA repertoire for functional genome research in rainbow trout (Oncorhnchus mykiss)[J]. Marine Biotechnology (NY), 12(4): 410-429.
Shrivastava S, Steele R, Ray R, et al. 2015. MicroRNAs: role in hepatitis C virus pathogenesis[J]. Gene & Diseases, 2(1): 35-45.
Song L, Tuan RS. 2006. MicroRNAs and cell differentiation in mammalian development[J]. Birth Defects Research Part C: Embryo Today, 78(2): 140-149.
Soni K, Choudhary A, Patowary A, et al. 2013. MiR-34 is maternally inherited in Drosophila melanogaster and Danio rerio[J]. Nucleic Acids Research, 41: 4470-4480.
Su Z, Si W, Li L, et al. 2014. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development[J]. The International Journal of Biochemistry & Cell Biology, 49: 53-63.
Tadros W, Lipshitz HD. 2009. The maternal-to-zygotic transition: a play in two acts[J]. Development, 136: 3303-3042.
Tani S, Kusakabe R, Naruse K, et al. 2010. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development[J]. Gene, 449(1/2): 41-49.
Thatcher EJ, Paydar I, Anderson KK, et al. 2008. Regulation of zebrafish fin regeneration by microRNAs[J]. Proceedings of the National Academy of Sciences, 105: 18384-18389.
Townley-Tilson WH, Callis TE, Wang D. 2010. MicroRNAs 1, 133 and 206: critical factors of skeletal and cardiac muscle development, function,and disease[J]. The International Journal of Biochemistry & Cell Biology, 42: 1252-1255.
Wang X, Ono Y, Tan S, et al. 2011. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo[J]. Development, 138: 4399-4404.
Wienholds E, Kloosterman WP, Miska E, et al. 2005. MicroRNA expression in zebrafish embryonic development[J]. Science, 309: 310-311.
Wienholds E, Koudijs MJ, Cuppen E, et al. 2003. The microRNA-producing enzyme Dicer1 is essential for zebrafish development[J]. Nature Genetics, 35: 217-218.
Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans[J]. Cell, 75: 855-862.
Woltering JM, Durston AJ. 2008. MiR-10 represses HoxB1a and HoxB3a in zebrafish[J]. PLoS One, 3(1): e1396.
Xia J, He X, Bai Z, et al. 2011. Identification and characterization of 63 microRNAs in the Asian seabass Lates calcarifer[J]. PLoS One, 6: 11.
Xie C, Xu S, Yang L, et al. 2011. mRNA/microRNA profile at the metamorphic stage of olive flounder (Paralichthys olivaceus)[J]. Comparative and Functional Genomics, 2011: 256038.
Xu S. 2009. MicroRNA expression in the eyes and their significance in relation to functions[J]. Progress in Retinal and Eye Research, 28: 87-116.
Xu Z, Chen J, Li X, et al. 2013. Identification and characterization of microRNAs in channel catfish (Ictalurus punctatus) by using solexa sequencing technology[J]. PLoS One, 8(1): e54174.
Xu Z, Qin Q, Ge J, et al. 2012. Bioinformatic identification and validation of conservative microRNAs in Ictalurus punctatus[J]. Molecular Biology Reports, 39: 10395-10405.
Yan B, Guo JT, Zhao LH, et al. 2012a. MicroRNA expression signature in skeletal muscle of Nile tilapia[J]. Aquaculture, 364-365: 240-246.
Yan B, Guo JT, Zhao LH, et al. 2012b. MiR-30c: a novel regulator of salt tolerance in tilapia[J]. Biochemical and Biophysical Research Communications, 425: 315-320.
Yan B, Zhu CD, Guo JT, et al. 2013. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression[J]. Journal of Experimental Biology, 216: 1265-1269.
Yin VP, Lepilina A, Smith A, et al. 2012. Regulation of zebrafish heart regeneration by miR-133[J]. Developmental Biology, 365: 319-327.
Zhao Y, Samal E, Srivastava D. 2005. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 436: 214-220.
Zhao Y, Xiong Q, Xie P. 2011. Analysis of microRNA expression in embryonic developmental toxicity induced by MC-RR[J]. PLoS One, 6 (7): e22676.
Zhu Y, Xue W, Wang J, et al. 2012. Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related SNPs[J]. BMC Genomics, 13: 413.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2018四川动物》编辑部 蜀ICP备08107403号-3
您是本站第6375999名访问者

川公网安备 51010702000173号