刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610064
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2015年第34卷第6期

基于线粒体基因组的沙蜥高海拔适应研究
High-altitude Adaptation of Genus Phrynocephalus Based on Mitochondrial Genome
李娜1,2, 杨伟钊1, 傅金钟3*
点击:806次 下载:98次
DOI:
作者单位:1. 中国科学院成都生物研究所, 成都610041;
2. 中国科学院大学, 北京100049;
3. 加拿大圭尔夫大学综合生物学系, 圭尔夫ON N1G 2W1
中文关键字:适应性进化;线粒体基因组;沙蜥;高海拔;正选择
英文关键字:adaptive evolution; mitochondrial genome; Phrynocephalus; high altitude; positive selection
中文摘要:高海拔地区的物种容易受到低温、低氧、强紫外辐射等极端环境因素的影响。研究这些物种对特殊环境的应对反应,能够为进一步理解适应进化的机制提供重要线索。线粒体是细胞的能量代谢中心,因此线粒体基因组很可能在动物高原适应中起着重要作用。鬣蜥科Agamidae沙蜥属Phrynocephalus物种广泛分布于海拔1000~5300 m范围内,是研究高原适应的良好材料。本研究对2种高海拔沙蜥和6种低海拔沙蜥的线粒体基因组进行了比较研究,检测了可能经历过正选择的蛋白编码基因,探讨了线粒体基因在沙蜥高海拔适应中的作用。结果发现,在不同物种间,高海拔西藏沙蜥Phrynocephalus theobaldi的线粒体基因组中蛋白编码基因的进化速率最快;在不同基因间,ATP8具有最快的进化速率。使用分支-位点模型进行正选择检测,发现ATP8基因在西藏沙蜥中存在明显的正选择信号(P<0.05,ω>1)。通过贝叶斯方法进一步计算每个位点的后验概率,发现在ATP8基因上存在2个正选择位点。这些结果说明ATP8基因可能在西藏沙蜥高海拔适应中起到了重要的作用。但在同为高海拔的青海沙蜥Phrynocephalus vlangalii中,却没有发现类似的正选择信号,这揭示不同物种高海拔适应的分子机制可能不同。
英文摘要:Organisms living in high altitudes are exposed to multiple stresses such as low temperature, hypoxia, high UV radiation and other extreme environmental factors. Understanding how high-altitude species cope with the combined effects of environmental factors can provide important insights into the process of adaptive evolution. Mitochondria are the energy factory in cells, and more than 95% of the energy in cells is produced by the mitochondrial oxidative phosphorylation (OXPHOS). Therefore, mitochondria likely plays an important role in the process of high-altitude adaptation. Lizard species of the genus Phrynocephalus (Squamata, Agamidae) are widespread in central Asia and cross a large elevational range from 1000 m to 5300 m. Using two high-altitude and six low-altitude Phrynocephalus species, the role of mitochondrial genome in high-altitude adaptation of ectotherms were tested in this study. The branch model analyses revealed that Phrynocephalus theobaldi had the largest ω value among species, followed by P. vlangalii. Among different genes, ATP8 had the largest ω value, and in P. theobaldi it was greater than 1, suggesting that ATP8 had experienced positive selection. In the branch-site model analyses, we found evidence of positive selection in ATP8 gene on the P. theobaldi branch (P<0.05). Amino-acid residue sites 5 and 40 of the ATP8 genes were inferred as positively selected sites with posterior probabilities greater than 95%. Our results suggested that the changes of mitochondrial genes likely played a critical role during the adaptation process to high altitudes for P. theobaldi. Surprisingly, no evidence for positive selection was detected in P. vlangalii, suggesting that species might use different molecular mechanisms in high-altitude adaptation.
2015,34(6): 810-816 收稿日期:2015-05-07
DOI:10.11984/j.issn.1000-7083.20150166
分类号:Q959.6
基金项目:国家自然科学基金青年基金项目(31201723); 国家自然科学基金海外及港澳学者合作研究基金项目(31328021)
作者简介:李娜(1988—),女,硕士研究生,主要从事进化生物学方面的研究
*通讯作者:傅金钟,E-mail:jfu@uoguelph.ca
参考文献:
赵尔宓, 赵肯堂, 周开亚. 1999. 中国动物志 爬行纲. 第二卷. 有鳞目 蜥蜴亚目[M]. 北京: 科学出版社: 151.
赵肯堂. 1997. 中国的沙蜥属研究[J]. 动物学杂志, 32(1): 15-19.
Aljanabi S, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[J]. Nucleic Acids Research, 25(22): 4692-4693.
Boore JL. 1999. Animal mitochondrial genomes[J]. Nucleic Acids Reseach, 27(8): 1767-1780.
Cheviron ZA, Bachman GC, Connaty AD. 2012. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice[J]. Proceedings of the National Academy of Sciences, USA, 109(22): 8635-8640.
da Fonseca RR, Johnson WE, O'Brien SJ, et al. 2008. The adaptive evolution of the mammalian mitochondrial genome[J]. BMC Genomics, 9: 119.
Galtier N, Nabholz B, Glemin S, et al. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal[J]. Molecular Ecology, 18(22): 4541-4550.
Grandcolas P, D'Haese C. 2003. Testing adaptation with phylogeny: how to account for phylogenetic pattern and selective value together[J]. Zoologica Scripta, 32(5): 483-490.
Guo X, Wang Y. 2007. Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation[J]. Molecular Phylogenetics and Evolution, 45(2): 643-662.
Jin Y, Brown RP. 2013. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau[J]. Molecular Phylogenetics and Evolution, 68(2): 259-268.
Lenormand T. 2002. Gene flow and the limits to natural selection[J]. Trends in Ecology & Evolution, 17(4): 183-189.
Meiklejohn CD, Montooth KL, Rand DM. 2007. Positive and negative selection on the mitochondrial genome[J]. Trends Genetics, 23(6): 259-263.
Pang J, Wang Y, Zhong Y, et al. 2003. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 27(3): 398-409.
Rand DM. 2001. The units of selection on mitochondrial DNA[J]. Annual Review of Ecology and Systematics, 32(1): 415-448.
Rokas A, Carroll SB. 2008. Frequent and widespread parallel evolution of protein sequences[J]. Molecular Biology and Evolution, 25(9): 1943-1953.
Ronquist F, Teslenko M, Ayres DL, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. System Biology, 61(3): 539-542.
Scheinfeldt LB, Tishkoff SA. 2010. Living the high life: high-altitude adaptation[J]. Genome Biology, 11(9): 133.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models[J]. Bioinformatics, 22(21): 2688-2690.
Sun C, Kong QP, Zhang YP. 2007. The role of climate in human mitochondrial DNA evolution: a reappraisal[J]. Genomics, 89(3): 338-342.
Tang X, Xin Y, Wang H, et al. 2013. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world[J]. PLoS ONE, 8(8): e71976.
Xu S, Luosang J, Hua S, et al. 2007. High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome[J]. Journal of Genetics and Genomics, 34(8): 720-729.
Yang W, Qi Y, Fu J. 2014. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad headed Agamas (Genus Phrynocephalus)[J]. PLoS ONE, 9(11): e112218.
Yang Z, Nielsen R. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of mammals[J]. Molecular Evolution, 46(4): 409-418.
Yu L, Wang X, Ting N, et al. 2011. Mitogenomic analysis of Chinese snub-nosed monkeys: evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation[J]. Mitochondrion, 11: 497-503.
Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Molecular Biology and Evolution, 22(12): 2472-2479.
Zhang W, Fan Z, Han E, et al. 2014. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau[J]. PLoS Genetics, 10(7): e1004466.
Zhou T, Shen X, David M, et al. 2014. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds[J]. Mitochondrion, 18: 70-75.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2017四川动物》编辑部 蜀ICP备08107403号-3
您是本站第5546059名访问者

川公网安备 51010702000173号