刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2015年第34卷第5期

气候变化情景下物种适宜生境预测研究进展
Advance in Predicting the Suitable Habitat of Species under Future Climate Change
雷军成1,2, 徐海根3, 吴军3, 关庆伟2*, 丁晖3, 崔鹏3
点击:1103次 下载:54次
DOI:
作者单位:1. 赣南师范学院地理与规划学院, 江西赣州 341000;
2. 南京林业大学生物与环境学院, 南京 210037;
3. 环境保护部南京环境科学研究所, 南京 210042
中文关键字:物种分布模型;集合预测;气候情景;潜在分布;生境
英文关键字:species distribution model; ensemble prediction; climate scenario; potential distribution; habitat
中文摘要:气候变化能够引起物种分布范围、生物物候等一系列生态现象和过程的变化,进而加速物种灭绝的速率。气候变化被认为是21世纪全球生物多样性面临的最主要威胁之一,将给未来的生物多样性保护工作带来严峻的挑战。利用物种分布模型预测气候变化情景下物种适宜生境的变化正成为当前的研究热点。本研究总结目前气候变化情景下物种适宜生境预测的最新方法及取得的主要成果。在研究方法上,多物种分布模型、多气候情景基础上的集合预测方法正成为目前研究采用的主要手段;在研究结果上,未来气候变化将有可能导致物种适宜生境面积减少,范围向高纬度、高海拔地区移动。最后本研究指出目前气候变化情景下物种适宜生境预测研究中存在的主要不足及今后的发展方向。
英文摘要:Climate change can bring a series of changes in ecological phenomena and processes, such as species distribution range and phenology. These changes were supposed to accelerate the extinction rate of species. As one of the major threats to biodiversity in the 21th century, climate change posed a severe challenge to biodiversity conservation in the future. Current researches mainly focused to predict the variation of species distribution in the context of climate change using species distribution models (SDMs). In this review, the latest methods and conclusions in the studies of predicting the suitable habitat of species under the climate change were summarized. Currently, multi-climate scenarios and multi-SDMs based ensemble prediction techniques were the dominant methods. The future climate change were supposed to cause the decrease of suitable habitat area, and the shift of species from suitable habitats to high latitudes or altitudes. Finally, we pointed out the main deficiencies in current studies and the direction of study in the future.
2015,(): 794-800 收稿日期:2014-10-30
DOI:10.11984/j.issn.1000-7083.20140487
分类号:X176
基金项目:国家科技支撑计划(2012BAC01B01)
作者简介:雷军成(1984-),男,博士,主要从事生物多样性保护研究工作,E-mail:ljctnt@126.com
*通讯作者:关庆伟,教授,博士生导师,E-mail:guanjapan999@163.com
参考文献:
雷军成, 徐海根. 2010. 基于MaxEnt的加拿大一枝黄花在中国潜在分布区预测[J]. 生态与农村环境学报, 26(2):137-141.
颜忠诚, 陈永林. 1998. 动物的生境选择[J]. 生态学杂志, 17(2):43-49.
翟天庆, 李欣海. 2012. 用组合模型综合比较的方法分析气候变化对朱鹮潜在生境的影响[J]. 生态学报, 32(8):2361-2370.
张雷, 刘世荣, 孙鹏森, 等. 2011. 气候变化对物种分布影响模拟中的不确定性组分分割与制图——以油松为例[J]. 生态学报, 31(19):5749-5761.
Aranda SC, Lobo JM. 2011. How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora[J]. Ecography, 34(1):31-38.
Araújo MB, Alagador D, Cabeza M, et al. 2011. Climate change threatens European conservation areas[J]. Ecology Letters, 14(5):484-492.
Araújo MB, New M. 2007. Ensemble forecasting of species distributions[J]. Trends in Ecology and Evolution, 22(1):42-47.
Ashcroft MB, French KO, Chisholm LA. 2012. A simple post-hoc method to add spatial context to predictive species distribution models[J]. Ecological Modelling, 228:17-26.
Barbet-Massin M, Rome Q, Muller F, et al. 2013. Climate change increases the risk of invasion by the Yellow-legged hornet[J]. Biological Conservation, 157:4-10.
Beale CM, Lennon JJ. 2012. Incorporating uncertainty in predictive species distribution modelling[J]. Philosophical Transaction of the Royal Society B:Biological Sciences, 367(1586):247-258.
Beaumont L, Hughes L. 2002. Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change[J]. Global Change Biology, 8(10):954-971.
Berryman S, Mccune B. 2006. Estimating epiphytic macrolichen biomass from topography, stand structure and lichen community data[J]. Journal of Vegetation Science, 17(2):157-170.
Bertelsmeier C, Guénard B, Courchamp F. 2013a. Climate change may boost the invasion of the Asian needle ant[J]. PLoS ONE, 8(10):e75438.
Bertelsmeier C, Luque GM, Courchamp F. 2013b. The impact of climate change changes over time[J]. Biological Conservation, 167:107-115.
Braunisch V, Suchant R. 2010. Predicting species distributions based on incomplete survey data:the trade-off between precision and scale[J]. Ecography, 33(5):826-840.
Chlłond D, Bugaj-Nawrocka A. 2014. Model of potential distribution of Platymeris rhadamanthus Gerstaecker, 1873 with redescription of species[J]. Zoological Studies, 53(8):1-14.
Clark JT, Fei SL, Liang L, et al. 2012. Mapping eastern hemlock:comparing classification techniques to evaluate susceptibility of a fragmented and valued resource to an exotic invader, the hemlock woolly adelgid[J]. Forest Ecology Management, 266:216-222.
Collevatti RG, Lima-Ribeiro MS, Diniz-Filho JAF, et al. 2013. Stability of Brazilian seasonally dry forests under climate change:inferences for long-term conservation[J]. American Journal of Plant Sciences, 4:792-805.
Dai B, Dowell SD, Garson PJ, et al. 2009. Habitat utilisation by the threatened Sichuan Partridge Arborophila rufipectus:consequences for managing newly protected areas in southern China[J]. Bird Conservation International, 19(2):187-198.
Daszak P, Zambrana-Torrelio C, Bogich TL, et al. 2013. Interdisciplinary approaches to understanding disease emergence:the past, present, and future drivers of Nipah virus emergence[J]. Proceedings of the National Academy of Sciences, 110(Suppl.1):3681-3688.
Dunlop M, Hilbert DW, Ferrier S, et al. 2012. The implications of climate change for biodiversity conservation and the national reserve system:final synthesis. A report prepared for the Department of Sustainability, Environment, Water, Population and Communities, and the Department of Climate Change and Energy Efficiency[R]. Canberra:CSIRO Climate Adaptation Flagship:1-79.
Elith J, Graham CH, Anderson RP, et al. 2006. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 29(2):129-151.
Eskildsen A, Le Roux PC, Heikkinen RK, et al. 2013. Testing species distribution models across space and time:high latitude butterflies and recent warming[J]. Global Ecology and Biogeography, 22(12):1293-1303.
Flombaum P, Gallegos JL, Gordillo RA, et al. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus[J]. Proceedings of the National Academy of Sciences, 110(24):9824-9829.
Flower A, Murdock TQ, Taylor SW, et al. 2013. Using an ensemble of downscaled climate model projections to assess impacts of climate change on the potential distribution of spruce and Douglas-fir forests in British Columbia[J]. Environmental Science & Policy, 26:63-74.
Freeman LA, Kleypas JA, Miller AJ. 2013. Coral reef habitat response to climate change scenarios[J]. PLoS ONE, 8(12):e82404.
Guo QH, Liu Y. 2010. ModEco:an integrated software package for ecological niche modeling[J]. Ecography, 33(4):1-6.
Hannah L, Roehrdanz PR, Ikegami M, et al. 2013. Climate change, wine, and conservation[J]. Proceedings of the National Academy of Sciences, 110(17):6907-6912.
Hefley TJ, Baasch DM, Tyre AJ, et al. 2013. Correction of location errors for presence-only species distribution models[J]. Methods in Ecology and Evolution, 5(3):826-840.
Hijmans RJ, Cameron SE, Parra JL, et al. 2005. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 25(15):1965-1978.
Hijmans RJ, Guarino L, Cruz M, et al. 2001. Computer tools for spatial analysis of plant genetic resources data:1. DIVA-GIS[J]. Plant Genetic Resource Newsletter, 127:15-19.
Hirzel AH, Hausser J, Chessel D, et al. 2002. Ecological-niche factor analysis:how to compute habitat-suitability maps without absence data?[J]. Ecology, 83(7):2027-2036.
IPCC Work Group I. 2013. Climate change 2013:the physical science basis[R]. London:Cambridge University Press.
Jackson CR, Robertson MP. 2011. Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records[J]. Journal for Nature Conservation, 19(2):87-94.
Jiménez-Alfaro B, Draper D, Nogués-Bravo D. 2012. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates[J]. Biological Conservation, 147(1):190-196.
Jiménez-Valverde A, Gómez JF, Lobo JM, et al. 2008. Challenging species distribution models:the case of Maculinea nausithous in the Iberian Peninsula[J]. Annales Zoologici Fennici, 45(3):200-210.
Jiménez-Valverde A, Lobo JM. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence[J]. Acta Oecologica, 31(3):361-369.
Kissling WD, Field R, Korntheuer H, et al. 2010. Woody plants and the prediction of climate-change impacts on bird diversity[J]. Philosophical Transaction of the Royal Society B:Biological Sciences, 365(1549):2035-2045.
Lehmann A, Overton JM, Leathwick JR. 2002. GRASP:generalized regression analysis and spatial prediction[J]. Ecological Modelling, 157(2):189-207.
Leng W, He HS, Bu R, et al. 2008. Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China[J]. Forest Ecology and Management, 254(3):420-428.
Lenoir J, Gégout JC, Marquet PA, et al. 2008. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 320(5884):1768-1771.
Leroy B, Paschetta M, Canard A, et al. 2013. First assessment of effects of global change on threatened spiders:potential impacts on Dolomedes plantarius (Clerck) and its conservation plans[J]. Biological Conservation, 161:155-163.
Liu C, Berry PM, Dawson TP, et al. 2005. Selecting thresholds of occurrence in the prediction of species distributions[J]. Ecography, 28(3):385-393
Liu X, Rohr JR, Li Y. 2013. Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic[J]. Philosophical Transaction of the Royal Society B:Biological Sciences, 280(1753):20122506.
Maiorano L, Falcucci A, Zimmermann N, et al. 2011. The future of terrestrial mammals in the Mediterranean basin under climate change[J]. Philosophical Transaction of the Royal Society B:Biological Sciences, 366(1578):2681-2692.
Martínez-Freiría F, Argaz H, Fahd S, et al. 2013. Climate change is predicted to negatively influence Moroccan endemic reptile richness. Implications for conservation in protected areas[J]. Naturwissenschaften, 100(9):877-889.
Muñoz MES, Giovanni R, Siqueira MF, et al. 2011. OpenModeller:a generic approach to species' potential distribution modelling[J]. GeoInformatica, 15(1):111-135.
Nenzén HK, Araújo MB. 2011. Choice of threshold alters projections of species range shifts under climate change[J]. Ecological Modelling, 222(18):3346-3354.
Olson L, Sauder JD, Albrecht NM, et al. 2014. Modeling the effects of dispersal and patch size on predicted fisher (Pekania[Martes] pennanti) distribution in the US Rocky Mountains[J]. Biological Conservation, 169:89-98.
Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 421(6918):37-42.
Pearson RG, Thuiller W, Araújo MB, et al. 2006. Model-based uncertainty in species range prediction[J]. Journal of Biogeography, 33(10):1704-1711.
Peterson AT, Ortega-Huerta MA, Bartley J, et al. 2002. Future projections for Mexican faunas under global climate change scenarios[J]. Nature, 416(6881):626-629.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190(3):231-259.
Phillips SJ, Dudík M, Elith J, et al. 2009. Sample selection bias and presence-only distribution models:implications for background and pseudo-absence data[J]. Ecological Applications, 19(1):181-197.
Prugh LR, Hodges KE, Sinclair ARE, et al. 2008. Effect of habitat area and isolation on fragmented animal populations[J]. Proceedings of the National Academy of Sciences, 105(52):20770-20775.
Rangel TS, Diniz-Filho JAF, Bin LM. 2010. SAM:a comprehensive application for spatial analysis in macroecology[J]. Ecography, 33(1):46-50.
Robinson TP, van Klinken RD, Metternicht G. 2010. Comparison of alternative strategies for invasive species distribution modeling[J]. Ecological Modelling, 221(19):2261-2269.
Slater H, Michael E. 2012. Predicting the current and future potential distributions of lymphatic filariasis in Africa using Maximum Entropy ecological niche modelling[J]. PLoS ONE, 7(2):e32202.
Sommer JH, Kreft H, Kier G, et al. 2010. Projected impacts of climate change on regional capacities for global plant species richness[J]. Proceeding of the Royal Society B, 277(1692):2271-2280.
Stockwell D, Peters D. 1999. The GARP modelling system:problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information Science, 13(2):143-158.
Suárez-Seoane S, García De La Morena EL, Morales Prieto MB, et al. 2008. Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution[J]. Ecological Modelling, 219(1):17-29.
The Secretariat of the Convention on Biological Diversity (CBD). 2010. Global biodiversity outlook 3[R]. Rio de Janeiro:Convention on Biological Diversity:55-69.
Thomas CD, Cameron A, Green RE, et al. 2004. Extinction risk from climate change[J]. Nature, 427(6970):145-148.
Thomas CD, Gillingham PK, Bradbury RB, et al. 2012. Protected areas facilitate species' range expansions[J]. Proceedings of the National Academy of Sciences, 109(35):14063-14068.
Thuiller W, Lavorel S, Araújo MB, et al. 2005. Climate change threats to plant diversity in Europe[J]. Proceedings of the National Academy of Sciences, 102(23):8245-8250.
Thuiller W, Lafourcade B, Engler R, et al. 2009. BIOMOD-a platform for ensemble forecasting of species distributions[J]. Ecography, 32(3):369-373.
Tsoar A, Allouche O, Steinitz O, et al. 2007. A comparative evaluation of presence-only methods for modelling species distribution[J]. Diversity and Distributions, 13(4):397-405.
Valle M, Chust G, Del Campo A, et al. 2014. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise[J]. Biological Conservation, 170:74-85.
Vasconcelos TS, Rodríguez Má, Hawkins BA. 2012. Species distribution modelling as a macroecological tool:a case study using New World amphibians[J]. Ecography, 35(6):539-548.
Velásquez-Tibatá J, Salaman P, Graham CH. 2013. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia[J]. Regional Environmental Change, 13(2):235-248.
Villemant C, Barbet-Massin M, Perrard A, et al. 2011. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models[J]. Biological Conservation, 144(9):2142-2150.
Virkkala R, Heikkinen RK, Leikola N, et al. 2008. Projected large-scale range reductions of northern-boreal land bird species due to climate change[J]. Biological Conservation, 141(5):1343-1353.
Wiens JA, Stralberg D, Jongsomjit D, et al. 2009. Niches, models, and climate change:assessing the assumptions and uncertainties[J]. Proceedings of the National Academy of Sciences, 106(suppl. 2):19729-19736.
Williams JN, Seo C, Thorne J, et al. 2009. Using species distribution models to predict new occurrences for rare plants[J]. Diversity and Distributions, 15(4):565-576.
Williams JW, Jackson ST, Kutzbach JE. 2007. Projected distributions of novel and disappearing climates by 2100 AD[J]. Proceedings of the National Academy of Sciences, 104(14):5738-5742.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2019四川动物》编辑部 蜀ICP备08107403号-3
您是本站第7093396名访问者

川公网安备 51010702000173号