刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2015年第34卷第5期

计算机模拟在野生动物种群遗传学研究中的应用
Utility of Computer Simulations in Population Genetics of Wild Animals
刘刚, 龚明昊*, 李惠鑫
点击:1404次 下载:33次
DOI:
作者单位:中国林业科学研究院湿地研究所, 北京 100091
中文关键字:计算机模拟;种群遗传学;统计预测;统计推理;统计验证
英文关键字:computer simulation; population genetics; statistical prediction; statistical inference; statistical validation
中文摘要:野生动物进化是遗传变异和环境变化相互作用的结果,其过程复杂、难以预测。进化过程包括基因突变、疾病、自然选择、空间扩散等自然因子,也包括驯化、栖息地破碎化、人工选择等人为干扰因子。计算机模拟能够揭示该复杂过程的历史特征,同时也能预测环境变化造成的遗传影响,正成为种群遗传学领域关注的研究方向。随着计算机模拟技术的发展,各种模拟软件层出不穷,功能全面且易操作,越来越多的计算机模拟软件被应用于野生动物的保护与管理。对计算机模拟应用于野生动物保护进行综述,总结了simuPOP、ms、CDPOP、SimCoal、Bayes SSC、DIYABC等近20种计算机模拟软件的功能,包括统计预测功能、统计推理功能和统计验证功能,并筛选了约20个典型的野生动物研究案例,展示了多达30个具体功能;同时,梳理了它们在推测生活史特征、推测进化历史特征、预测种群管理、预测遗传多样性受环境变化的影响、验证取样和验证统计方法等六大方面的适用性;从计算机模拟面临的挑战(准确率的监测)和机遇(多学科合作),对计算机模拟应用于未来野生动物保护提出了展望。
英文摘要:The evolution of wild animals was the result of multiple interactions between genetic variation and environment, and these processes were complex and difficult to predict. Evolution involved with natural processes (mutation, disease, natural selection, and migration) and human-mediated processes (stocking, fragmentation, and artificial selection). Computer simulations were deployed by molecular ecologists, who wanted to quantitatively infer the history characteristics of species, and to predict species' response to environmental changes. With the improvement of computer simulation programming, various simulators were function-specifically and user-friendly. At present, computer simulations were primarily applied to the conservation and management of wild animals. By demonstrating nearly 30 detailed functions using 20 cases of wild species, we summarized the applications of about 30 computer simulations, such as simuPOP, ms, CDPOP, SimCoal, Bayes SSC, and DIYABC in the conservation and management of wild animals. And three functions of these simulations were statistical prediction, statistical inference and statistical validation. We also discussed the suitability of these simulations in 6 parts, including the inference of life history, inference of evolutionary history, prediction of population management, prediction of influences of environmental changes on genetic diversity, validation of sampling and validation of statistics. Based on the challenges and opportunities of computer simulations, we suggested that the accuracy of simulation should be firmly considered, and multiple-discipline professionals should be collaborated to accelerate the simulation tools in the conservation of wild animals.
2015,(): 787-793 收稿日期:2014-10-13
DOI:10.11984/j.issn.1000-7083.20140454
分类号:R857.3;Q38
基金项目:大熊猫国际资金项目(CM1423)
作者简介:刘刚(1982-),男,助理研究员,博士,主要从事湿地动物生态学研究
*通讯作者:龚明昊,E-mail:gongmh2005@hotmail.com
参考文献:
Aberer AJ, Stamatakis A. 2013. Rapid forward-in-time simulation at the chromosome and genome level[J]. BMC Bioinformatics, 14(1):216.
Anderson CNK, Ramakrishnan U, Chan YL, et al. 2005. Serial SimCoal:a population genetics model for data from multiple populations and points in time[J]. Bioinformatics, 21(8):1733-1734.
Anderson EC, Dunham KK. 2005. Spip 1.0:a program for simulating pedigrees and genetic data in age-structured papulations[J]. Molecular Ecology Notes, 5(2):459-461.
Andrew RL, Bernatchez L, Bonin A, et al. 2013. A road map for molecular ecology[J]. Molecular Ecology, 22:2605-2626.
Archer FI, Martien KK, Taylor BL, et al. 2010. A simulation-based approach to evaluating population structure in non-equilibrial populations[J]. Journal of Cetacean Research & Management, 11(2):101-113.
Armstrong DP, Seddon PJ. 2008. Directions in reintroduction biology[J]. Trends in Ecology & Evolution, 23(1):20-25.
Balkenhol N, Landguth EL. 2011. Simulation modelling in landscape genetics:on the need to go further[J]. Molecular Ecology, 20(4):667-670.
Balloux F, Amos W, Coulson T. 2004. Does heterozygosity estimate inbreeding in real populations?[J]. Molecular Ecology, 13(10):3021-3031.
Balloux F. 2001. EASYPOP (version 1.7):a computer program for population genetics simulations[J]. Journal of Heredity, 92(3):301-302.
Blair C, Weigel DE, Balazik M, et al. 2012.A simulation-based evaluation of methods for inferring linear barriers to gene flow[J]. Molecular Ecology Resources, 12:822-833.
Brekke P, Bennett PM, Santure AW. 2011. High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction[J]. Molecular Ecology, 20(1):29-45.
Bruford MW, Ancrenaz M, Chikhi L. 2010. Projecting genetic diversity and population viability for the fragmented orang-utan population in the Kinabatangan floodplain, Sabah, Malaysia[J]. Endangered Species Research, 12(3):249-261.
Campos PF, Kristensen T, Orlando L, et al. 2010. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene[J]. Molecular Ecology, 19(22):4863-4875.
Chikhi L, Sousa VC, Luisi P, et al. 2010. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes[J]. Genetics, 186:983-995.
Coombs JA, Letcher B, Nislow KH. 2010. Pedagog:software for simulating eco-evolutionary population dynamics[J]. Molecular Ecology Resources, 10(3):558-563.
Cornet JM, Pudlo P, Veyssier J, et al. 2014. DIYABC v2.0:a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data[J].Bioinformatics, 30(8):1187-1189.
Craighead JJ, Varney JR, Craighead FC. 1974. A population analysis of the Yellowstone grrizzly bears[M]. Missoula:Mont For and Conserv Exp Sta Bull.
Currat M, Ray N, Excoffier L. 2004. SPLATCHE:a program to simulate genetic diversity taking into account environmental heterogeneity[J]. Molecular Ecology Notes, 4(1):139-142.
Dalén L, Nystr m V, Valdiosera C, et al. 2007. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox[J]. Proceedings of the National Academy of Sciences, 104(16):6726-6729.
Davidson AD, Hamilton MJ, Boyer AG, et al. 2009. Multiple ecological pathways to extinction in mammals[J]. Proceedings of the National Academy of Sciences, 106(26):10702-10705.
De Mita S, Thuillet AC, Gay L, et al. 2013. Detecting selection along environmental gradients:analysis of eight methods and their effectiveness for outbreeding and selfing populations[J]. Molecular Ecology, 22:1383-1399.
Elith J, Leathwick JR. 2009. Species distribution models:ecological explanation and prediction across space and time[J]. Annual Review of Ecology Evolution & Systematics, 40(40):677-697.
Epperson BK, McRae BH, Scribner K. 2010. Utility of computer simulations in landscape genetics[J]. Molecular Ecology, 19(17):3549-3564.
Ewing G, Hermisson J. 2010. MSMS:a coalescent simulation program including recombination, demographic structure and selection at a single locus[J]. Bioinformatics, 26(16):2064-2065.
Excoffier L, Foll M. 2011. Fastsimcoal:a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios[J]. Bioinformatics, 27(9):1332-1334.
Godefroid S, Piazza C, Rossi G, et al. 2011. How successful are plant species reintroductions?[J]. Biological Conservation, 144(2):672-682.
Gotelli NJ, Ellison GN. 2004. A primer of ecological statistics[M]. Sunderland Massachusetts:Sinauer Associates.
Guillaume F, Rougemont J. 2006. Nemo:an evolutionary and population genetics programming framework[J]. Bioinformatics, 22(20):2556-2557.
Henle K, Lindenmayer DB, Margules CR, et al. 2004. Species survival in fragmented landscapes:where are we now?[J]. Biodiversity & Conservation, 13(1):1-8.
Hoban S, Bertorelle G, Gaggiotti OE. 2012. Computer simulations:tools for population and evolutionary genetics[J]. Nature Reviews Genetics, 13(2):110-122.
Hoban S, Gaggiotti O, Bertorelle G. 2013. Sample planning optimization tool for conservation and population genetics (SPOTG):a software for choosing the appropriate number of markers and samples[J]. Methods in Ecology and Evolution, 4(3):299-303.
Hoban S. 2014. An overview of the utility of population simulation software in molecular ecology[J]. Molecular Ecology, 23(10):2383-2401.
Hudson RR. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation[J]. Bioinformatics, 18:337-338.
IUCN. 1987. The IUCN position statement on translation of living organisms:introductions, reintroductions and restocking[M]. Gland:International Union for the Conservation of Nature.
Kremer A, Ronce O, Robledo-Arnuncio JJ, et al. 2012. Long-distance gene flow and adaptation of forest trees to rapid climate change[J]. Ecology Letters, 15(4):378-392.
Kuo CH, Janzen F. 2003. BottleSim:a bottleneck simulation program for long-lived species with overlapping generations[J]. Molecular Ecology Notes, 3(4):669-673.
Landguth EL, Cushman SA. 2010. CDPOP:a spatially explicit cost distance population genetics program[J]. Molecular Ecology Resources, 10(1):156-161.
Landguth EL, Fedy BC, Oyler-McCance SJ, et al. 2012. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern[J]. Molecular Ecology Resources, 12(2):276-284.
Leblois R, Estoup A, Rousset F. 2009. IBDSIM:a computer program to simulate genotypic data under isolation by distance[J]. Molecular Ecology Resources, 9(1):107-109.
Liu G, Shafer A, Zimmermann W, et al. 2014. Evaluating the reintroduction project of Przewalski's horse in China using genetic and pedigree data[J]. Biological Conservation, 171:288-298.
Lloyd MW, Campbell L, Neel MC. 2013. The power to detect recent fragmentation events using genetic differentiation methods[J]. PLoS One, 8:e63981.
Marjoram P, Tavaré S. 2006. Modern computational approaches for analysing molecular genetic variation data[J]. Nature Reviews Genetics, 7(10):759-770.
Mayr E. 1970. Populations, species, and evolution:an abridgement of animal species and evolution[M]. Cambridge:Belknap Press of Havard University Press.
Mayr M. 2004. Uses and abuses of mathematics in biology[J]. Science, 303(5659):790-793.
McCleery RH, Perrins CM, Sheldon BC, et al. 2008. Age-specific reproduction in a long-lived species:the combined effects of senescence and individual quality[J]. Proceedings of the Royal Society B:Biological Sciences, 275(1637):963-970.
Morrissey MB, Wilson AJ. 2010. Pedantics:an r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing[J]. Molecular Ecology Resources, 10(4):711-719.
Narum SRR, Banks M, Beacham TD, et al. 2008. Differentiat in salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms[J]. Molecular Ecology, 17:3464-3477.
Nichols JD, Williams BK. 2006. Monitoring for conservation[J]. Trends in Ecology & Evolution, 21(12):668-673.
Peck SL. 2004. Simulation as experiment:a philosophical reassessment for biological modeling[J]. Trends in Ecology & Evolution, 19(10):530-534.
Peng B, Kimmel M. 2005. SimuPOP:a forward-time population genetics simulation environment[J]. Bioinformatics, 21(18):3686-3687.
Pinsky ML, Newsome SD, Dickerson BR, et al. 2010. Dispersal provided resilience to range collapse in a marine mammal:insights from the past to inform conservation biology[J]. Molecular Ecology, 19(12):2418-2429.
Puebla O, Bermingham E, McMillan WO. 2012. On the spatial scale of dispersal in coral reef fishes[J]. Molecular Ecology, 21(23):5675-5688.
Robinson SP, Simmons LW, Kennington WJ. 2013. Estimating relatedness and inbreeding using molecular markers and pedigrees:the effect of demographic history[J]. Molecular Ecology, 22(23):5779-5792.
Rosenberg N, Nordborg AM. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms[J]. Nature Reviews Genetics, 3(5):380-390.
Santure AW, Stapley J, Ball AD, et al. 2010. On the use of large marker panels to estimate inbreeding and relatedness:empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs[J]. Molecular Ecology, 19(7):1439-1451.
Shafer A, Gattepaille LM, Stewart REA, et al. 2015. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework:in silico evaluation of power, biases and proof of concept in Atlantic warlus[J]. Molecular ecology, 24(2):328-345.
Shapiro B, Drummond AJ, Rambaut A, et al. 2004. Rise and fall of the Beringian steppe bison[J]. Science, 306(5701):1561-1565.
Strand AE, Niehaus JM. 2007. KERNELPOP, a spatially explicit population genetic simulation engine[J]. Molecular Ecology Notes, 7(6):969-973.
Thalmann O, Fischer A, Lankester F, et al. 2007. The complex evolutionary history of gorillas:insights from genomic data[J]. Molecular Biology and Evolution, 24(1):146-158.
Wasserman TN, Cushman SA, Shirk AS, et al. 2012. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA[J]. Landscape Ecology, 27(2):211-225.
Weiser EL, Grueber CE, Jamieson IG. 2012. AlleleRetain:a program to assess management options for conserving allelic diversity in small, isolated populations[J]. Molecular Ecology Resources, 12(6):1161-1167.
Williams BK, Nichols JD, Conroy MJ, et al. 2002. Analysis and management of animal populations:modeling, estimation, and decision making[M]. San Diego:Academic Press.
Zhu L, Hu Y, Qi D, et al. 2013. Genetic consequences of historical anthropogenic and ecological events on giant pandas[J]. Ecology, 94(10):2346-2357.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2019四川动物》编辑部 蜀ICP备08107403号-3
您是本站第7093318名访问者

川公网安备 51010702000173号